Skip to main content
Molecular and Cellular Biology logoLink to Molecular and Cellular Biology
. 1983 Oct;3(10):1694–1702. doi: 10.1128/mcb.3.10.1694

Sequence analysis of mitochondrial DNA in a mouse cell line resistant to chloramphenicol and oligomycin.

E F Slott Jr, R O Shade, R A Lansman
PMCID: PMC370029  PMID: 6227806

Abstract

A mouse L-cell line, designated 111-OB3, is described which is resistant to two drugs, chloramphenicol and oligomycin. The cells contain two types of mitochondrial DNA molecules, in roughly equal proportions, which differ in that one is cleaved by endonuclease EcoRI at a novel site within the coding sequence for subunit 6 of the mitochondrial ATPase (ATPase-6). Sequence analysis reveals that the cleavage site was created by a single transversion which predicts a replacement of valine in the wild-type ATPase-6 by glutamic acid. The replacement occurs in a hydrophobic amino acid sequence which is highly conserved in mouse, human, and bovine proteins. The position of the replacement is similar to a substitution observed in one class of yeast mutants resistant to oligomycin. Both of the mitochondrial DNA molecules in 111-OB3 also have a single nucleotide change in the gene encoding the large (16S) rRNA. These observations are consistent with the hypothesis that oligomycin resistance in mammalian cells can be cytoplasmically determined and can result from alterations in ATPase-6. The appearance of the mutation before selection in oligomycin suggests a model for the origin of mitochondrial mutations in mammalian cells.

Full text

PDF
1694

Images in this article

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Anderson S., Bankier A. T., Barrell B. G., de Bruijn M. H., Coulson A. R., Drouin J., Eperon I. C., Nierlich D. P., Roe B. A., Sanger F. Sequence and organization of the human mitochondrial genome. Nature. 1981 Apr 9;290(5806):457–465. doi: 10.1038/290457a0. [DOI] [PubMed] [Google Scholar]
  2. Berk A. J., Clayton D. A. Mechanism of mitochondrial DNA replication in mouse L-cells: asynchronous replication of strands, segregation of circular daughter molecules, aspects of topology and turnover of an initiation sequence. J Mol Biol. 1974 Jul 15;86(4):801–824. doi: 10.1016/0022-2836(74)90355-6. [DOI] [PubMed] [Google Scholar]
  3. Bibb M. J., Van Etten R. A., Wright C. T., Walberg M. W., Clayton D. A. Sequence and gene organization of mouse mitochondrial DNA. Cell. 1981 Oct;26(2 Pt 2):167–180. doi: 10.1016/0092-8674(81)90300-7. [DOI] [PubMed] [Google Scholar]
  4. Blanc H., Adams C. W., Wallace D. C. Different nucleotide changes in the large rRNA gene of the mitochondrial DNA confer chloramphenicol resistance on two human cell lines. Nucleic Acids Res. 1981 Nov 11;9(21):5785–5795. doi: 10.1093/nar/9.21.5785. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Blanc H., Wright C. T., Bibb M. J., Wallace D. C., Clayton D. A. Mitochondrial DNA of chloramphenicol-resistant mouse cells contains a single nucleotide change in the region encoding the 3' end of the large ribosomal RNA. Proc Natl Acad Sci U S A. 1981 Jun;78(6):3789–3793. doi: 10.1073/pnas.78.6.3789. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Bogenhagen D., Clayton D. A. The number of mitochondrial deoxyribonucleic acid genomes in mouse L and human HeLa cells. Quantitative isolation of mitochondrial deoxyribonucleic acid. J Biol Chem. 1974 Dec 25;249(24):7991–7995. [PubMed] [Google Scholar]
  7. Breen G. A., Scheffler I. E. Cytoplasmic inheritance of oligomycin resistance in Chinese hamster ovary cells. J Cell Biol. 1980 Sep;86(3):723–729. doi: 10.1083/jcb.86.3.723. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Bunn C. L., Wallace D. C., Eisenstadt J. M. Cytoplasmic inheritance of chloramphenicol resistance in mouse tissue culture cells. Proc Natl Acad Sci U S A. 1974 May;71(5):1681–1685. doi: 10.1073/pnas.71.5.1681. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Danna K. J. Determination of fragment order through partial digests and multiple enzyme digests. Methods Enzymol. 1980;65(1):449–467. doi: 10.1016/s0076-6879(80)65055-1. [DOI] [PubMed] [Google Scholar]
  10. Dujon B. Sequence of the intron and flanking exons of the mitochondrial 21S rRNA gene of yeast strains having different alleles at the omega and rib-1 loci. Cell. 1980 May;20(1):185–197. doi: 10.1016/0092-8674(80)90246-9. [DOI] [PubMed] [Google Scholar]
  11. Howell N., Sager R. Cytoplasmic genetics of mammalian cells: conditional sensitivity to mitochondrial inhibitors and isolation of new mutant phenotypes. Somatic Cell Genet. 1979 Nov;5(6):833–845. doi: 10.1007/BF01542645. [DOI] [PubMed] [Google Scholar]
  12. Kearsey S. E., Craig I. W. Altered ribosomal RNA genes in mitochondria from mammalian cells with chloramphenicol resistance. Nature. 1981 Apr 16;290(5807):607–608. doi: 10.1038/290607a0. [DOI] [PubMed] [Google Scholar]
  13. King B. O., Shade R. O., Lansman R. A. The use of restriction endonucleases to compare mitochondrial DNA sequences in Mus musculus: a detailed restriction map of mitochondrial DNA from mouse L cells. Plasmid. 1981 May;5(3):313–328. doi: 10.1016/0147-619x(81)90008-1. [DOI] [PubMed] [Google Scholar]
  14. Kuhns M. C., Eisenstadt J. M. Nuclear inheritance of oligomycin resistance in mouse L cells. Somatic Cell Genet. 1981 Nov;7(6):737–750. doi: 10.1007/BF01538761. [DOI] [PubMed] [Google Scholar]
  15. Kuhns M. C., Eisenstadt J. M. Oligomycin-resistant mitochondrial ATPase from mouse fibroblasts. Somatic Cell Genet. 1979 Nov;5(6):821–832. doi: 10.1007/BF01542644. [DOI] [PubMed] [Google Scholar]
  16. LOWRY O. H., ROSEBROUGH N. J., FARR A. L., RANDALL R. J. Protein measurement with the Folin phenol reagent. J Biol Chem. 1951 Nov;193(1):265–275. [PubMed] [Google Scholar]
  17. Lagarde A. E., Siminovitch L. Studies on Chinese hamster ovary mutants showing multiple cross-resistance to oxidative phosphorylation inhibitors. Somatic Cell Genet. 1979 Nov;5(6):847–871. doi: 10.1007/BF01542646. [DOI] [PubMed] [Google Scholar]
  18. Lansman R. A., Clayton D. A. Selective nicking of mammalian mitochondrial DNA in vivo: photosensitization by incorporation of 5-bromodeoxyuridine. J Mol Biol. 1975 Dec 25;99(4):761–776. doi: 10.1016/s0022-2836(75)80183-5. [DOI] [PubMed] [Google Scholar]
  19. Lansman R. A., Shade R. O., Shapira J. F., Avise J. C. The use of restriction endonucleases to measure mitochondrial DNA sequence relatedness in natural populations. III. Techniques and potential applications. J Mol Evol. 1981;17(4):214–226. doi: 10.1007/BF01732759. [DOI] [PubMed] [Google Scholar]
  20. Lichtor T., Getz G. S. Cytoplasmic inheritance of rutamycin resistance in mouse fibroblasts. Proc Natl Acad Sci U S A. 1978 Jan;75(1):324–328. doi: 10.1073/pnas.75.1.324. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Lichtor T., Tung B., Getz G. S. Cytoplasmically inherited respiratory deficiency of a mouse fibroblast line which is resistant to rutamycin. Biochemistry. 1979 Jun 12;18(12):2582–2590. doi: 10.1021/bi00579a023. [DOI] [PubMed] [Google Scholar]
  22. Macino G., Tzagoloff A. Assembly of the mitochondrial membrane system: sequence analysis of a yeast mitochondrial ATPase gene containing the oli-2 and oli-4 loci. Cell. 1980 Jun;20(2):507–517. doi: 10.1016/0092-8674(80)90637-6. [DOI] [PubMed] [Google Scholar]
  23. Meagher R. B., Tait R. C., Betlach M., Boyer H. W. Protein expression in E. coli minicells by recombinant plasmids. Cell. 1977 Mar;10(3):521–536. doi: 10.1016/0092-8674(77)90039-3. [DOI] [PubMed] [Google Scholar]
  24. Robberson D. L., Clayton D. A. Replication of mitochondrial DNA in mouse L cells and their thymidine kinase - derivatives: displacement replication on a covalently-closed circular template. Proc Natl Acad Sci U S A. 1972 Dec;69(12):3810–3814. doi: 10.1073/pnas.69.12.3810. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. Russell W. C., Newman C., Williamson D. H. A simple cytochemical technique for demonstration of DNA in cells infected with mycoplasmas and viruses. Nature. 1975 Feb 6;253(5491):461–462. doi: 10.1038/253461a0. [DOI] [PubMed] [Google Scholar]
  26. Sebald W. Biogenesis of mitochondrial ATPase. Biochim Biophys Acta. 1977 Jun 21;463(1):1–27. doi: 10.1016/0304-4173(77)90002-7. [DOI] [PubMed] [Google Scholar]
  27. Spolsky C. M., Eisenstadt J. M. Chloramphenicol-resistant mutants of human HeLa cells. FEBS Lett. 1972 Sep 15;25(2):319–324. doi: 10.1016/0014-5793(72)80514-3. [DOI] [PubMed] [Google Scholar]
  28. Tzagoloff A., Meagher P. Assembly of the mitochondrial membrane system. V. Properties of a dispersed preparation of the rutamycin-sensitive adenosine triphosphatase of yeast mitochondria. J Biol Chem. 1971 Dec 10;246(23):7328–7336. [PubMed] [Google Scholar]
  29. Wallace D. C. Assignment of the chloramphenicol resistance gene to mitochondrial deoxyribonucleic acid and analysis of its expression in cultured human cells. Mol Cell Biol. 1981 Aug;1(8):697–710. doi: 10.1128/mcb.1.8.697. [DOI] [PMC free article] [PubMed] [Google Scholar]
  30. Wigler M. H., Neugut A. I., Weinstein I. B. Enucleation of mammalian cells in suspension. Methods Cell Biol. 1976;14:87–93. doi: 10.1016/s0091-679x(08)60471-9. [DOI] [PubMed] [Google Scholar]
  31. Wiseman A., Attardi G. Cytoplasmically inherited mutations of a human cell line resulting in deficient mitochondrial protein synthesis. Somatic Cell Genet. 1979 Mar;5(2):241–262. doi: 10.1007/BF01539164. [DOI] [PubMed] [Google Scholar]
  32. Ziegler M. L., Davidson R. L. The effect of hexose on chloramphenicol sensitivity and resistance in Chinese hamster cells. J Cell Physiol. 1979 Mar;98(3):627–635. doi: 10.1002/jcp.1040980321. [DOI] [PubMed] [Google Scholar]

Articles from Molecular and Cellular Biology are provided here courtesy of Taylor & Francis

RESOURCES