Abstract
Jensen rat sarcoma cells in culture require L-asparagine for growth and lack detectable levels of asparagine synthetase. Cultures exposed for 24 h to graded concentrations of 5-azacytidine give rise to asparagine-independent variants in high frequency. These prototrophs are stable phenotypically whether maintained in the presence or absence of L-asparagine. Asparagine synthetase activity in several variant clones was uniform in thermolability and several kinetic parameters, as well as in immunological properties. Parental Jensen rat sarcoma cells contained no detectable immunologically cross-reacting material. Our data suggest that transitions between asparagine dependence and independence in these cells are mediated by stable shifts in gene expression rather than by structural gene mutations.
Full text
PDF





Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Arfin S. M., Simpson D. R., Chiang C. S., Andrulis I. L., Hatfield G. W. A role for asparaginyl-tRNA in the regulation of asparagine synthetase in a mammalian cell line. Proc Natl Acad Sci U S A. 1977 Jun;74(6):2367–2369. doi: 10.1073/pnas.74.6.2367. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Clough D. W., Kunkel L. M., Davidson R. L. 5-Azacytidine-induced reactivation of a herpes simplex thymidine kinase gene. Science. 1982 Apr 2;216(4541):70–73. doi: 10.1126/science.6175023. [DOI] [PubMed] [Google Scholar]
- Colofiore J., Morrow J., Patterson M. K., Jr Asparagine-requiring tumor cell lines and their non-requiring variants: cytogenetics, biochemistry and population dynamics. Genetics. 1973 Nov;75(3):503–514. doi: 10.1093/genetics/75.3.503. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Compere S. J., Palmiter R. D. DNA methylation controls the inducibility of the mouse metallothionein-I gene lymphoid cells. Cell. 1981 Jul;25(1):233–240. doi: 10.1016/0092-8674(81)90248-8. [DOI] [PubMed] [Google Scholar]
- Cooney D. A., Handschumacher R. E. L-asparaginase and L-asparagine metabolism. Annu Rev Pharmacol. 1970;10:421–440. doi: 10.1146/annurev.pa.10.040170.002225. [DOI] [PubMed] [Google Scholar]
- Gantt J. S., Arfin S. M. Elevated levels of asparagine synthetase activity in physiologically and genetically derepressed Chinese hamster ovary cells are due to increased rates of enzyme synthesis. J Biol Chem. 1981 Jul 25;256(14):7311–7315. [PubMed] [Google Scholar]
- Gantt J. S., Chiang C. S., Hatfield G. W., Arfin S. M. Chinese hamster ovary cells resistant to beta-aspartylhydroxamate contain increased levels of asparagine synthetase. J Biol Chem. 1980 May 25;255(10):4808–4813. [PubMed] [Google Scholar]
- Goldfarb P. S., Carritt B., Hooper M. L., Slack C. The isolation and characterization of asparagine-requiring mutants of Chinese hamster cells. Exp Cell Res. 1977 Feb;104(2):357–367. doi: 10.1016/0014-4827(77)90101-x. [DOI] [PubMed] [Google Scholar]
- Harris M. Induction of thymidine kinase in enzyme-deficient Chinese hamster cells. Cell. 1982 Jun;29(2):483–492. doi: 10.1016/0092-8674(82)90165-9. [DOI] [PubMed] [Google Scholar]
- Hongo S., Matsumoto T., Sato T. Purification and properties of asparagine synthetase from rat liver. Biochim Biophys Acta. 1978 Jan 12;522(1):258–266. doi: 10.1016/0005-2744(78)90342-x. [DOI] [PubMed] [Google Scholar]
- Horowitz B., Meister A. Glutamine-dependent asparagine synthetase from leukemia cells. Chloride dependence, mechanism of action, and inhibition. J Biol Chem. 1972 Oct 25;247(20):6708–6719. [PubMed] [Google Scholar]
- Ivarie R. D., Morris J. A. Induction of prolactin-deficient variants of GH3 rat pituitary tumor cells by ethyl methanesulfonate: reversion by 5-azacytidine, a DNA methylation inhibitor. Proc Natl Acad Sci U S A. 1982 May;79(9):2967–2970. doi: 10.1073/pnas.79.9.2967. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Jones P. A., Taylor S. M. Cellular differentiation, cytidine analogs and DNA methylation. Cell. 1980 May;20(1):85–93. doi: 10.1016/0092-8674(80)90237-8. [DOI] [PubMed] [Google Scholar]
- Landolph J. R., Jones P. A. Mutagenicity of 5-azacytidine and related nucleosides in C3H/10T 1/2 clone 8 and V79 cells. Cancer Res. 1982 Mar;42(3):817–823. [PubMed] [Google Scholar]
- McCOY T. A., MAXWELL M., KRUSE P. F., Jr The amino acid requirements of the Jensen sarcoma in vitro. Cancer Res. 1959 Jul;19(6 Pt 1):591–595. [PubMed] [Google Scholar]
- McGhee J. D., Ginder G. D. Specific DNA methylation sites in the vicinity of the chicken beta-globin genes. Nature. 1979 Aug 2;280(5721):419–420. doi: 10.1038/280419a0. [DOI] [PubMed] [Google Scholar]
- Milman H. A., Cooney D. A. The distribution of L-asparagine synthetase in the principal organs of several mammalian and avian species. Biochem J. 1974 Jul;142(1):27–35. doi: 10.1042/bj1420027. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Mohandas T., Sparkes R. S., Shapiro L. J. Reactivation of an inactive human X chromosome: evidence for X inactivation by DNA methylation. Science. 1981 Jan 23;211(4480):393–396. doi: 10.1126/science.6164095. [DOI] [PubMed] [Google Scholar]
- Naveh-Many T., Cedar H. Active gene sequences are undermethylated. Proc Natl Acad Sci U S A. 1981 Jul;78(7):4246–4250. doi: 10.1073/pnas.78.7.4246. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Schneider J. A., Weiss M. C. Expression of differentiated functions in hepatoma cell hybrids. I. Tyrosine aminotransferase in hepatoma-fibroblast hybrids. Proc Natl Acad Sci U S A. 1971 Jan;68(1):127–131. doi: 10.1073/pnas.68.1.127. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Sutter D., Doerfler W. Methylation of integrated adenovirus type 12 DNA sequences in transformed cells is inversely correlated with viral gene expression. Proc Natl Acad Sci U S A. 1980 Jan;77(1):253–256. doi: 10.1073/pnas.77.1.253. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Taylor S. M., Jones P. A. Multiple new phenotypes induced in 10T1/2 and 3T3 cells treated with 5-azacytidine. Cell. 1979 Aug;17(4):771–779. doi: 10.1016/0092-8674(79)90317-9. [DOI] [PubMed] [Google Scholar]
- Uren J. R., Summers W. P., Handschumacher R. E. Enzymatic and nutritional evidence for two-stage exression of the asparagine synthetase locus in L5178y murine leukemia mutants. Cancer Res. 1974 Nov;34(11):2940–2945. [PubMed] [Google Scholar]
- Waye M. M., Stanners C. P. Isolation and characterization of CHO cell mutants with altered asparagine synthetase. Somatic Cell Genet. 1979 Sep;5(5):625–639. doi: 10.1007/BF01542699. [DOI] [PubMed] [Google Scholar]