Skip to main content
The Journal of Clinical Investigation logoLink to The Journal of Clinical Investigation
. 1982 Apr;69(4):816–825. doi: 10.1172/JCI110521

Structural and Enzymatic Comparison of Human Cardiac Muscle Myosins Isolated from Infants, Adults, and Patients with Hypertrophic Cardiomyopathy

John J Schier 1, Robert S Adelstein 1
PMCID: PMC370136  PMID: 6210710

Abstract

Human cardiac ventricular myosins were prepared from autopsy samples from nine adults, seven infants, and from surgical specimens from seven patients undergoing left ventricular septal myectomy for obstructive hypertrophic cardiomyopathy. Infant myosin differed from adult myosin in two important characteristics: (a) ∼30% of the 27,000-dalton myosin light chain is replaced by a 28,000-dalton light chain, and (b) the actin-activated myosin MgATPase activity of infant myosin is significantly lower than that of adult myosin (64 nmol phosphate released/mg myosin per min vs. 124 nmol/mg per min at 37°C). The K+-EDTA ATPase activity of the myosin measured in 0.5M KCl is also lower in infants (1,210 nmol/mg per min vs. 620 nmol/mg per min at 37°C), but the Ca++-activated ATPase is not significantly different. There were no differences in enzymatic activity between the normal adult and cardiomyopathic myosins.

A detailed study was performed to investigate possible variations in the structure of the myosin heavy chain in infant, adult, and cardiomyopathic samples. There were no significant differences between infant and normal adult, or between normal adult and cardiomyopathic myosins seen in pyrophosphate polyacrylamide gel electrophoresis, or peptide mapping using alpha-chymotrypsin, papain, or cyanogen bromide to generate peptides.

These results suggest that isoenzymes of human ventricular myosin do not exist for the myosin heavy chain in the specimens examined from infants, adults, and patients with obstructive hypertrophic cardiomyopathy. The decreased actin-activated MgATPase activity found for infant myosin appears to be due solely to a partial replacement of the 27,000-dalton light chain of myosin with a 28,000-dalton light chain.

Full text

PDF
816

Images in this article

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. ALPERT N. R., GORDON M. S. Myofibrillar adenosine triphosphatase activity in congestive heart failure. Am J Physiol. 1962 May;202:940–946. doi: 10.1152/ajplegacy.1962.202.5.940. [DOI] [PubMed] [Google Scholar]
  2. Banerjee S. K., Kabbas E. G., Morkin E. Enzymatic properties of the heavy meromyosin subfragment of cardiac myosin from normal and thyrotoxic rabbits. J Biol Chem. 1977 Oct 10;252(19):6925–6929. [PubMed] [Google Scholar]
  3. Chantler P. D., Szent-Györgyi A. G. Spectroscopic studies on invertebrate myosins and light chains. Biochemistry. 1978 Dec 12;17(25):5440–5448. doi: 10.1021/bi00618a018. [DOI] [PubMed] [Google Scholar]
  4. Cummins P., Price K. M., Littler W. A. Foetal myosin light chain in human ventricle. J Muscle Res Cell Motil. 1980 Sep;1(3):357–366. doi: 10.1007/BF00711936. [DOI] [PubMed] [Google Scholar]
  5. Flink I. L., Morkin E. Evidence for a new cardiac myosin species in thyrotoxic rabbit. FEBS Lett. 1977 Sep 15;81(2):391–394. doi: 10.1016/0014-5793(77)80561-9. [DOI] [PubMed] [Google Scholar]
  6. Flink I. L., Rader J. H., Banerjee S. K., Morkin E. Atrial and ventricular cardiac myosins contain different heavy chain species. FEBS Lett. 1978 Oct 1;94(1):125–130. doi: 10.1016/0014-5793(78)80921-1. [DOI] [PubMed] [Google Scholar]
  7. Focant B., Huriaux F. Light chains of carp and pike skeletal muscle myosins. Isolation and characterization of the most anodic light chain on alkaline pH electrophoresis. FEBS Lett. 1976 May 15;65(1):16–19. doi: 10.1016/0014-5793(76)80611-4. [DOI] [PubMed] [Google Scholar]
  8. Hoh J. F., McGrath P. A., Hale P. T. Electrophoretic analysis of multiple forms of rat cardiac myosin: effects of hypophysectomy and thyroxine replacement. J Mol Cell Cardiol. 1978 Nov;10(11):1053–1076. doi: 10.1016/0022-2828(78)90401-7. [DOI] [PubMed] [Google Scholar]
  9. Hoh J. F., Yeoh G. P. Rabbit skeletal myosin isoenzymes from fetal, fast-twitch and slow-twitch muscles. Nature. 1979 Jul 26;280(5720):321–323. doi: 10.1038/280321a0. [DOI] [PubMed] [Google Scholar]
  10. Hoh J. F., Yeoh G. P., Thomas M. A., Higginbottom L. Structural differences in the heavy chains of rat ventricular myosin isoenzymes. FEBS Lett. 1979 Jan 15;97(2):330–334. doi: 10.1016/0014-5793(79)80115-5. [DOI] [PubMed] [Google Scholar]
  11. Hoh J. Y., McGrath P. A., White R. I. Electrophoretic analysis of multiple forms of myosin in fast-twitch and slow-twitch muscles of the chick. Biochem J. 1976 Jul 1;157(1):87–95. doi: 10.1042/bj1570087. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Laemmli U. K. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature. 1970 Aug 15;227(5259):680–685. doi: 10.1038/227680a0. [DOI] [PubMed] [Google Scholar]
  13. Leclercq J. F., Swynghedauw B., Bouveret P., Faucomprez C., Piguet V. Myofibrillar ATPase, DNA and hydroxyproline content of human hypertrophied heart. Eur J Clin Invest. 1976 Jan 30;6(1):27–33. doi: 10.1111/j.1365-2362.1976.tb00490.x. [DOI] [PubMed] [Google Scholar]
  14. Lompre A. M., Schwartz K., d'Albis A., Lacombe G., Van Thiem N., Swynghedauw B. Myosin isoenzyme redistribution in chronic heart overload. Nature. 1979 Nov 1;282(5734):105–107. doi: 10.1038/282105a0. [DOI] [PubMed] [Google Scholar]
  15. Maron B. J., Ferrans V. J., Adelstein R. S. Isolation and characterization of myosin from subjects with asymmetric septal hypertrophy. Circ Res. 1977 May;40(5):468–473. doi: 10.1161/01.res.40.5.468. [DOI] [PubMed] [Google Scholar]
  16. Matsudaira P. T., Burgess D. R. SDS microslab linear gradient polyacrylamide gel electrophoresis. Anal Biochem. 1978 Jul 1;87(2):386–396. doi: 10.1016/0003-2697(78)90688-7. [DOI] [PubMed] [Google Scholar]
  17. Morkin E., Banerjee S. K., Stern L. Z. Biochemical and histochemical evidence for stimulation of myosin ATPase activity in thyrotoxic rabbit heart. FEBS Lett. 1977 Jul 15;79(2):357–360. doi: 10.1016/0014-5793(77)80820-x. [DOI] [PubMed] [Google Scholar]
  18. Morkin E. Stimulation of cardiac myosin adenosine triphosphatase in thyrotoxicosis. Circ Res. 1979 Jan;44(1):1–7. doi: 10.1161/01.res.44.1.1. [DOI] [PubMed] [Google Scholar]
  19. Morrow A. G. Hypertrophic subaortic stenosis. Operative methods utilized to relieve left ventricular outflow obstruction. J Thorac Cardiovasc Surg. 1978 Oct;76(4):423–430. [PubMed] [Google Scholar]
  20. O'Farrell P. H. High resolution two-dimensional electrophoresis of proteins. J Biol Chem. 1975 May 25;250(10):4007–4021. [PMC free article] [PubMed] [Google Scholar]
  21. Perrie W. T., Perry S. V. An electrophoretic study of the low-molecular-weight components of myosin. Biochem J. 1970 Aug;119(1):31–38. doi: 10.1042/bj1190031. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Pollard T. D., Korn E. D. Acanthamoeba myosin. I. Isolation from Acanthamoeba castellanii of an enzyme similar to muscle myosin. J Biol Chem. 1973 Jul 10;248(13):4682–4690. [PubMed] [Google Scholar]
  23. Pope B., Hoh J. F., Weeds A. The ATPase activities of rat cardiac myosin isoenzymes. FEBS Lett. 1980 Sep 8;118(2):205–208. doi: 10.1016/0014-5793(80)80219-5. [DOI] [PubMed] [Google Scholar]
  24. Price K. M., Littler W. A., Cummins P. Human atrial and ventricular myosin light-chains subunits in the adult and during development. Biochem J. 1980 Nov 1;191(2):571–580. doi: 10.1042/bj1910571. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. Scheuer J., Bhan A. K. Cardiac contractile proteins. Adenosine triphosphatase activity and physiological function. Circ Res. 1979 Jul;45(1):1–12. doi: 10.1161/01.res.45.1.1. [DOI] [PubMed] [Google Scholar]
  26. Schwartz K., Bouveret P., Bercovici J., Swynghedauw B. An immunochemical difference between myosins from normal and hypertrophied rat hearts. FEBS Lett. 1978 Sep 1;93(1):137–140. doi: 10.1016/0014-5793(78)80822-9. [DOI] [PubMed] [Google Scholar]
  27. Schwartz K., Lompré A. M., Bouveret P., Wisnewsky C., Swynghedauw B. Use of antibodies against dodecylsulfate-denatured heavy meromyosins to probe structural differences between muscular myosin isoenzymes. Eur J Biochem. 1980 Mar;104(2):341–346. doi: 10.1111/j.1432-1033.1980.tb04434.x. [DOI] [PubMed] [Google Scholar]
  28. Sellers J. R., Chantler P. D., Szent-Györgyi A. G. Hybrid formation between scallop myofibrils and foreign regulatory light-chains. J Mol Biol. 1980 Dec 15;144(3):223–245. doi: 10.1016/0022-2836(80)90088-1. [DOI] [PubMed] [Google Scholar]
  29. Sréter F. A., Bálint M., Gergely J. Structural and functional changes of myosin during development: comparison with adult fast, slow and cardiac myosin. Dev Biol. 1975 Oct;46(2):317–325. doi: 10.1016/0012-1606(75)90108-6. [DOI] [PubMed] [Google Scholar]
  30. Swynghedauw B., Schwartz K., Léger J. J. Cardiac myosin. Phylogenic and pathological changes. Basic Res Cardiol. 1977 Mar-Jun;72(2-3):254–260. doi: 10.1007/BF01906370. [DOI] [PubMed] [Google Scholar]
  31. The myosin isozyme hypothesis in chronic heart overloading. J Mol Cell Cardiol. 1976 Dec;8(12):915–924. doi: 10.1016/0022-2828(76)90074-2. [DOI] [PubMed] [Google Scholar]
  32. Trotter J. A., Adelstein R. S. Macrophage myosin. Regulation of actin-activated ATPase, activity by phosphorylation of the 20,000-dalton light chain. J Biol Chem. 1979 Sep 25;254(18):8781–8785. [PubMed] [Google Scholar]
  33. Whalen R. G., Butler-Browne G. S., Gros F. Identification of a novel form of myosin light chain present in embryonic muscle tissue and cultured muscle cells. J Mol Biol. 1978 Dec 15;126(3):415–431. doi: 10.1016/0022-2836(78)90049-9. [DOI] [PubMed] [Google Scholar]

Articles from Journal of Clinical Investigation are provided here courtesy of American Society for Clinical Investigation

RESOURCES