Skip to main content
The Journal of Clinical Investigation logoLink to The Journal of Clinical Investigation
. 1982 Jun;69(6):1302–1309. doi: 10.1172/JCI110570

Differential effects of endocrine dysfunction on the axial and the appendicular skeleton.

E Seeman, H W Wahner, K P Offord, R Kumar, W J Johnson, B L Riggs
PMCID: PMC370203  PMID: 7085876

Abstract

In 100 patients with various types of endocrine dysfunction, we measured bone mineral density (BMD) at the midradius (greater than 95% cortical bone) and distal radius (75% cortical and 25% trabecular bone) by single photon absorptiometry and at the lumbar spine (greater than 66% trabecular bone) using the new technique of dual photon absorptiometry. BMD in each endocrine disorder deviated in at least one site from the sex-specific age regression of 187 normal subjects. For patients with primary hyperparathyroidism, hypercortisolism, and hyperthyroidism this deviation was negative (suggesting bone loss), whereas for patients with secondary hyperparathyroidism due to chronic renal failure, acromegaly, and postsurgical hypoparathyroidism it was positive (suggesting bone gain). When all six states of endocrine dysfunction were compared concomitantly by multivariate analysis of variance, the profile of the changes in BMD differed significantly (P less than 0.001), indicating a nonuniform response of bone to the various hormonal alterations. When values for BMD at each of the three scanning sites were compared the midradius and distal radius did not differ significantly; either of the radius measurements, however, differed significantly (P less than 0.001) from the lumbar spine. Thus, the BMD of the axial skeleton cannot be reliably predicted from measurements made in the appendicular skeleton. We conclude that the effects of endocrine dysfunction on bone density are complex and are both disease and site specific.

Full text

PDF
1302

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Aloia J. F., Zanzi I., Ellis K., Jowsey J., Roginsky M., Wallach S., Cohn S. H. Effects of growth hormone in osteoporosis. J Clin Endocrinol Metab. 1976 Nov;43(5):992–999. doi: 10.1210/jcem-43-5-992. [DOI] [PubMed] [Google Scholar]
  2. Bekier A. Der Nachweis der "thyreogenen Osteopathie" mit Hilfe moderner Photonenabsorptionstechnik. Schweiz Med Wochenschr. 1975 Mar 8;105(10):304–307. [PubMed] [Google Scholar]
  3. Bordier P., Miravet L., Matrajt H., Hioco D., Ryckewaert A. Bone changes in adult patients with abnormal thyroid function (with special reference to 45Ca kinetics and quantitative histology). Proc R Soc Med. 1967 Nov 1;60(11 Pt 1):1132–1134. doi: 10.1177/003591576706011P130. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. CAMERON J. R., SORENSON J. MEASUREMENT OF BONE MINERAL IN VIVO: AN IMPROVED METHOD. Science. 1963 Oct 11;142(3589):230–232. doi: 10.1126/science.142.3589.230. [DOI] [PubMed] [Google Scholar]
  5. Campos C., Arata R. O., Mautalen C. A. Parathyroid hormone and vertebral osteosclerosis in uremic patients. Metabolism. 1976 May;25(5):495–501. doi: 10.1016/0026-0495(76)90002-0. [DOI] [PubMed] [Google Scholar]
  6. Dalén N., Hjern B. Bone mineral content in patients with primary hyperparathyroidism without radiological evidence of skeletal changes. Acta Endocrinol (Copenh) 1974 Feb;75(2):297–304. doi: 10.1530/acta.0.0750297. [DOI] [PubMed] [Google Scholar]
  7. Dauphine R. T., Riggs B. L., Scholz D. A. Back pain and vertebral crush fractures: an unemphasized mode of presentation for primary hyperparathyroidism. Ann Intern Med. 1975 Sep;83(3):365–367. doi: 10.7326/0003-4819-83-3-365. [DOI] [PubMed] [Google Scholar]
  8. Doyle F. H. Radiology of the skeleton in endocrine diseases. Proc R Soc Med. 1967 Nov 1;60(11 Pt 1):1131–1132. doi: 10.1177/003591576706011P129. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Doyle F. H. Some quantitative radiological observations in primary and secondary hyperparathyroidism. Br J Radiol. 1966 Mar;39(459):161–167. doi: 10.1259/0007-1285-39-459-161. [DOI] [PubMed] [Google Scholar]
  10. Dunn W. L., Wahner H. W., Riggs B. L. Measurement of bone mineral content in human vertebrae and hip by dual photon absorptiometry. Radiology. 1980 Aug;136(2):485–487. doi: 10.1148/radiology.136.2.6773102. [DOI] [PubMed] [Google Scholar]
  11. Fraser S. A., Anderson J. B., Smith D. A., Wilson G. M. Osteoporosis and fractures following thyrotoxicosis. Lancet. 1971 May 15;1(7707):981–983. doi: 10.1016/s0140-6736(71)91383-3. [DOI] [PubMed] [Google Scholar]
  12. Frost H. M. Treatment of osteoporoses by manipulation of coherent bone cell populations. Clin Orthop Relat Res. 1979 Sep;(143):227–244. [PubMed] [Google Scholar]
  13. GONG J. K., ARNOLD J. S., COHN S. H. COMPOSITION OF TRABECULAR AND CORTICAL BONE. Anat Rec. 1964 Jul;149:325–331. doi: 10.1002/ar.1091490303. [DOI] [PubMed] [Google Scholar]
  14. Genant H. K., Baron J. M., Straus F. H., Paloyan E., Jowsey J. Osteosclerosis in primary hyperparathyroidism. Am J Med. 1975 Jul;59(1):104–113. doi: 10.1016/0002-9343(75)90327-7. [DOI] [PubMed] [Google Scholar]
  15. Hahn T. J., Boisseau V. C., Avioli L. V. Effect of chronic corticosteroid administration on diaphyseal and metaphyseal bone mass. J Clin Endocrinol Metab. 1974 Aug;39(2):274–282. doi: 10.1210/jcem-39-2-274. [DOI] [PubMed] [Google Scholar]
  16. Hossain M., Smith D. A., Nordin B. E. Parathyroid activity and postmenopausal osteoporosis. Lancet. 1970 Apr 18;1(7651):809–811. doi: 10.1016/s0140-6736(70)92410-4. [DOI] [PubMed] [Google Scholar]
  17. Koutras D. A., Pandos P. G., Koukoulommati A. S., Constantes J. Radiological signs of bone loss in hyperthyroidism. Br J Radiol. 1973 Sep;46(549):695–698. doi: 10.1259/0007-1285-46-549-695. [DOI] [PubMed] [Google Scholar]
  18. Nordin B. E., Horsman A., Crilly R. G., Marshall D. H., Simpson M. Treatment of spinal osteoporosis in postmenopausal women. Br Med J. 1980 Feb 16;280(6212):451–454. doi: 10.1136/bmj.280.6212.451. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Pak C. Y., Stewart A., Kaplan R., Bone H., Notz C., Browne R. Photon absorptiometric analysis of bone density in primary hyperparathyroidism. Lancet. 1975 Jul 5;2(7923):7–8. doi: 10.1016/s0140-6736(75)92950-5. [DOI] [PubMed] [Google Scholar]
  20. Parfitt A. M. Metacarpal cortical dimensions in hypoparathyroidism, primary hyperparathyroidism and chronic renal failure. Calcif Tissue Res. 1977 May;22 (Suppl):329–331. doi: 10.1007/BF02064091. [DOI] [PubMed] [Google Scholar]
  21. ROWLAND R. E., MARSHALL J. H. Radium in human bone: the dose in microscopic volumes of bone. Radiat Res. 1959 Sep;11:299–313. [PubMed] [Google Scholar]
  22. Riggs B. L., Randall R. V., Wahner H. W., Jowsey J., Kelly P. J., Singh M. The nature of the metabolic bone disorder in acromegaly. J Clin Endocrinol Metab. 1972 Jun;34(6):911–918. doi: 10.1210/jcem-34-6-911. [DOI] [PubMed] [Google Scholar]
  23. Riggs B. L., Wahner H. W., Dunn W. L., Mazess R. B., Offord K. P., Melton L. J., 3rd Differential changes in bone mineral density of the appendicular and axial skeleton with aging: relationship to spinal osteoporosis. J Clin Invest. 1981 Feb;67(2):328–335. doi: 10.1172/JCI110039. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Wahner H. W., Riggs B. L., Beabout J. W. Diagnosis of osteoporosis: usefulness of photon absorptiometry at the radius. J Nucl Med. 1977 May;18(5):432–437. [PubMed] [Google Scholar]

Articles from Journal of Clinical Investigation are provided here courtesy of American Society for Clinical Investigation

RESOURCES