Skip to main content
The Journal of Clinical Investigation logoLink to The Journal of Clinical Investigation
. 1982 Jul;70(1):198–200. doi: 10.1172/JCI110593

Development of tyrosine aminotransferase and para-hydroxyphenylpyruvate dioxygenase activities in fetal and neonatal human liver.

J J Ohisalo, T Laskowska-Klita, S M Andersson
PMCID: PMC370242  PMID: 6123525

Abstract

In livers of fetuses of 220--340 g body wt, total cytosolic tyrosine aminotransferase activity was 1.0 nmol of product/mg of protein per min, and the corresponding values for autopsy livers of newborns of 740--1,475 g and 2,600--3,650 g were 1.5 and 5.7, respectively, as compared with the adult value of 12.7. On the other hand, para-hydroxyphenylpyruvate dioxygenase activity is at adult level already in fetuses less than 340 g body wt. The Km value for tyrosine of tyrosine aminotransferase (1 mM) was considerably higher than the corresponding value for para-hydroxyphenylpyruvate of para-hydroxyphenylpyruvate dioxygenase (50 micro M). These results suggest that tyrosine aminotransferase is the rate limiting enzyme in the catabolism of tyrosine in premature infants.

Full text

PDF
198

Images in this article

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Andersson S. M., Räihä N. C., Ohisalo J. J. Tyrosine aminotransferase activity in human fetal liver. J Dev Physiol. 1980 Feb-Apr;2(1-2):17–27. [PubMed] [Google Scholar]
  2. Avery M. E., Clow C. L., Menkes J. H., Ramos A., Scriver C. R., Stern L., Wasserman B. P. Transient tyrosinemia of the newborn: dietary and clinical aspects. Pediatrics. 1967 Mar;39(3):378–384. [PubMed] [Google Scholar]
  3. Bakker H. D., Wadman S. K., Van Sprang F. J., Van der Heiden C., Ketting D., De Bree P. K. Tyrosinemia and tyrosyluria in healthy prematures: time courses not vitamin C-dependent. Clin Chim Acta. 1975 May 15;61(1):73–90. doi: 10.1016/0009-8981(75)90399-x. [DOI] [PubMed] [Google Scholar]
  4. Coufalik A. H., Monder C. Regulation of the tyrosine oxidizing system in fetal rat liver. Arch Biochem Biophys. 1980 Jan;199(1):67–75. doi: 10.1016/0003-9861(80)90257-x. [DOI] [PubMed] [Google Scholar]
  5. Dickson A. J., Marston F. A., Pogson C. I. Tyrosine aminotransferase as the rate-limiting step for tyrosine catabolism in isolated rat liver cells. FEBS Lett. 1981 May 5;127(1):28–32. doi: 10.1016/0014-5793(81)80333-x. [DOI] [PubMed] [Google Scholar]
  6. Fellman J. H., Buist N. R., Kennaway N. G., Swanson R. E. The source of aromatic ketoacids in tyrosinaemia and phenylketonuria. Clin Chim Acta. 1972 Jun;39(1):243–246. doi: 10.1016/0009-8981(72)90323-3. [DOI] [PubMed] [Google Scholar]
  7. Kennaway N. G., Buist N. R., Fellman J. H. The origin of urinary p-hydroxyphenylpyruvate in a patient with hepatic cytosol tyrosine aminotransferase deficiency. Clin Chim Acta. 1972 Oct;41:157–161. doi: 10.1016/0009-8981(72)90506-2. [DOI] [PubMed] [Google Scholar]
  8. LOWRY O. H., ROSEBROUGH N. J., FARR A. L., RANDALL R. J. Protein measurement with the Folin phenol reagent. J Biol Chem. 1951 Nov;193(1):265–275. [PubMed] [Google Scholar]
  9. Laskowska-Klita T. Purification of p-hydroxyphenylpyruvate hydroxylase and its natural inhibitor from liver of the frog, Rana esculenta. Acta Biochim Pol. 1969;16(1):35–44. [PubMed] [Google Scholar]
  10. Lindblad B., Lindstedt S., Olander B., Omfeldt M. Purification of p-hydroxyphenylpyruvate hydroxylase from human liver. Acta Chem Scand. 1970;25(1):329–330. doi: 10.3891/acta.chem.scand.25-0329. [DOI] [PubMed] [Google Scholar]
  11. Mamunes P., Prince P. E., Thornton N. H., Hunt P. A., Hitchcock E. S. Intellectual deficits after transient tyrosinemia in the term neonate. Pediatrics. 1976 May;57(5):675–680. [PubMed] [Google Scholar]
  12. Ohisalo J. J., Pispa J. P. Heterogeneity of hepatic tyrosine aminotransferase. Separation of the multiple forms from rat and frog liver by isoelectric focussing and hydroxylapatite column chromatography and their partial characterization. Acta Chem Scand B. 1976;30(6):491–500. doi: 10.3891/acta.chem.scand.30b-0491. [DOI] [PubMed] [Google Scholar]
  13. SEALOCK R. R., GOODLAND R. L. Ascorbic acid, a coenzyme in tyrosine oxidation. Science. 1951 Dec 14;114(2972):645–646. doi: 10.1126/science.114.2972.645. [DOI] [PubMed] [Google Scholar]
  14. Sternowsky H. J., Heigl K. Tyrosine and its metabolites in urine and serum of premature and mature newborns: increased values during formula versus breast feeding. Eur J Pediatr. 1979 Nov;132(3):179–187. doi: 10.1007/BF00442434. [DOI] [PubMed] [Google Scholar]
  15. Stoerner J. W., Butler I. J., Morriss F. H., Jr, Howell R. R., Seifert W. E., Jr, Caprioli R. M., Adcock E. W., 3rd, Denson S. E. CSF neurotransmitter studies. An infant with ascorbic acid-responsive tyrosinemia. Am J Dis Child. 1980 May;134(5):492–494. doi: 10.1001/archpedi.1980.02130170042014. [DOI] [PubMed] [Google Scholar]

Articles from Journal of Clinical Investigation are provided here courtesy of American Society for Clinical Investigation

RESOURCES