Skip to main content
The Journal of Clinical Investigation logoLink to The Journal of Clinical Investigation
. 1982 Sep;70(3):496–504. doi: 10.1172/JCI110641

Triiodothyronine stimulates maturation of porcine growth-plate cartilage in vitro.

W M Burch, H E Lebovitz
PMCID: PMC370250  PMID: 7107892

Abstract

We studied the effect of triiodothyronine (T3) on mammalian growth-plate cartilage in vitro. Growth-plate cartilages from fetal pigs scapulae were incubated for 3 to 7 d in serum-free medium alone or medium containing T3. Alkaline phosphatase activity, a marker of hypertrophied chondrocytes, was increased in T3 (10 nM)-treated growth-plate cartilage 152 +/- 36% above that of cartilage incubated in medium alone after 3 d of incubation, and 324 +/- 47% after 7 d of incubation. There was a dose-response increase in alkaline phosphatase activity to T3 over the range of 0.01-10 nM. The rise in alkaline phosphatase activity was specific for T3 since growth-plate cartilage alkaline phosphatase activity was not increased by cortisol, insulin, parathyroid hormone, or 5% fetal calf serum. Histological studies of growth-plate cartilage showed that T3 in a concentration-dependent manner increased the width of the zone of maturation (hypertrophied chondrocytes). Histochemical staining for alkaline phosphatase activity demonstrated that T3 caused the recruitment of new cells into the zone of maturation. T3 also stimulated incorporation of L-[3H]leucine into protein and 35SO4 into proteoglycan in growth-plate cartilage. In contrast, T3 did not increase alkaline phosphatase activity or radiolabeled precursor incorporation into nongrowth-plate scapular cartilage. These studies demonstrate that T3 directly stimulates maturation and, to a lesser degree, growth-related processes in fetal mammalian growth-plate cartilage.

Full text

PDF
496

Images in this article

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Audhya T. K., Gibson K. D. Enhancement of somatomedin titers of normal and hypopituitary sera by addition of L-triiodothyronone in vitro at physiological concentrations. Proc Natl Acad Sci U S A. 1975 Feb;72(2):604–608. doi: 10.1073/pnas.72.2.604. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Audhya T. K., Segen B. J., Gibson K. D. Stimulation of proteoglycan synthesis in chick embryo sternum by serum and L-3,5,3'-triiodothyronine. J Biol Chem. 1976 Jun 25;251(12):3763–3767. [PubMed] [Google Scholar]
  3. Eisenbarth G. S., Beuttel S. C., Lebovitz H. E. Fatty acid inhibition of somatomedin (serum sulfation factor)-stimulated protein and RNA synthesis in embryonic chicken cartilage. Biochim Biophys Acta. 1973 Dec 21;331(3):397–409. doi: 10.1016/0005-2787(73)90026-9. [DOI] [PubMed] [Google Scholar]
  4. Farrehi C. Accelerated maturity in fetal thyrotoxicosis. Clin Pediatr (Phila) 1968 Mar;7(3):134–137. doi: 10.1177/000992286800700304. [DOI] [PubMed] [Google Scholar]
  5. Fell H. B., Robison R. The growth, development and phosphatase activity of embryonic avian femora and limb-buds cultivated in vitro. Biochem J. 1929;23(4):767–784.5. doi: 10.1042/bj0230767. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Gaspard T., Wondergem R., Hamamdzić M., Klitgaard H. M. Serum somatomedin stimulation in thyroxine-treated hypophysectomized rats. Endocrinology. 1978 Feb;102(2):606–611. doi: 10.1210/endo-102-2-606. [DOI] [PubMed] [Google Scholar]
  7. Hall B. K. Thyroxine and the development of the tibia in the embryonic chick. Anat Rec. 1973 May;176(1):49–64. doi: 10.1002/ar.1091760104. [DOI] [PubMed] [Google Scholar]
  8. LOWRY O. H., ROSEBROUGH N. J., FARR A. L., RANDALL R. J. Protein measurement with the Folin phenol reagent. J Biol Chem. 1951 Nov;193(1):265–275. [PubMed] [Google Scholar]
  9. Lebovitz H. E., Eisenbarth G. S. Hormonal regulation of cartilage growth and metabolism. Vitam Horm. 1975;33:575–648. doi: 10.1016/s0083-6729(08)60973-5. [DOI] [PubMed] [Google Scholar]
  10. Riekstniece E., Asling C. W. Thyroxine augmentation of growth hormone-induced endochondral osteogenesis. Proc Soc Exp Biol Med. 1966 Oct;123(1):258–263. doi: 10.3181/00379727-123-31460. [DOI] [PubMed] [Google Scholar]
  11. SALMON W. D., Jr, DAUGHADAY W. H. A hormonally controlled serum factor which stimulates sulfate incorporation by cartilage in vitro. J Lab Clin Med. 1957 Jun;49(6):825–836. [PubMed] [Google Scholar]
  12. SCHLESINGER B., FISHER O. D. Accelerated skeletal development from thyrotoxicosis and thyroid overdosage in childhood. Lancet. 1951 Aug 18;2(6677):289–290. doi: 10.1016/s0140-6736(51)93282-5. [DOI] [PubMed] [Google Scholar]
  13. SIMPSON M. E., ASLING C. W., EVANS H. M. Some endocrine influences on skeletal growth and differentiation. Yale J Biol Med. 1950 Sep;23(1):1–27. [PMC free article] [PubMed] [Google Scholar]
  14. Shimomura Y., Yoneda T., Suzuki F. Osteogenesis by chondrocytes from growth cartilage of rat rib. Calcif Tissue Res. 1975 Dec 22;19(3):179–187. doi: 10.1007/BF02564002. [DOI] [PubMed] [Google Scholar]
  15. Suzuki F., Yoneda T., Shimomura Y. Calcitonin and parathyroid-hormone stimulation of acid mucopolysaccharide synthesis in cultured chondrocytes isolated from growth cartilage. FEBS Lett. 1976 Nov;70(1):155–158. doi: 10.1016/0014-5793(76)80747-8. [DOI] [PubMed] [Google Scholar]

Articles from Journal of Clinical Investigation are provided here courtesy of American Society for Clinical Investigation

RESOURCES