Skip to main content
The Journal of Clinical Investigation logoLink to The Journal of Clinical Investigation
. 1982 Dec;70(6):1216–1224. doi: 10.1172/JCI110720

Synergistic activation by collagen and 15-hydroxy-9 alpha,11 alpha-peroxidoprosta-5,13-dienoic acid (PGH2) of phosphatidylinositol metabolism and arachidonic acid release in human platelets.

S E Rittenhouse, C L Allen
PMCID: PMC370338  PMID: 6816811

Abstract

Collagen stimulates the activation of phosphatidylinositol (PI)-specific phospholipase C (EC 3.1.4.10) in human platelets, as manifested by the disappearance of PI, the transient formation of diacylglycerol (DG), and release of myoinositol. Platelets exposed to collagen also form lysophosphatidylinositol (LPI). Maximum formation of DG occurs within 60 s of the addition of collagen and is in proportion to the concentration of collagen provided, up to 100 micrograms/2 x 10(9) platelets/ml. Hydrolysis of PI, formation of DG, and release of arachidonic acid are all inhibited approximately 68% by aspirin or indomethacin, both of which inhibit platelet cyclooxygenase. This inhibition is reversed by the product of cyclooxygenase activity, 15-hydroxy - 9 alpha,11 alpha - peroxidoprosta - 5,13 - dienoic acid (PGH2), or by the PGH2 analogue and agonist, U-46619. The counteracting effects of either PGH2 or the PGH2 analogue can be blocked, in turn, by a PGH2 antagonist, U-51605. Neither PGH2 nor its stable analogue is, by itself, an efficient stimulus for PI breakdown to DG and LPI in platelets. However, in conjunction with collagen, these agents synergistically promote the net breakdown of PI and the release of arachidonic acid in aspirin-treated platelets. Our findings thereby imply that PGH2 has an important role in regulating both the release of its precursor, arachidonic acid, and the metabolism of PI induced by collagen. Dibutyryl cyclic AMP or prostaglandin D2 (PGD2), a prostaglandin that elevates concentrations of cAMP in platelets by stimulating adenylate cyclase, inhibits the hydrolysis of PI induced by collagen by 70%. The activation of PI metabolism by collagen appears to be inhibited by cAMP independently of any effects of this inhibitor on the formation of PGH2.

Full text

PDF
1216

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Alexander R. W., Cooper B., Handin R. I. Characterization of the human platelet alpha-adrenergic receptor. Correlation of [3H]dihydroergocryptine binding with aggregation and adenylate cyclase inhibition. J Clin Invest. 1978 May;61(5):1136–1144. doi: 10.1172/JCI109028. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Bell R. L., Kennerly D. A., Stanford N., Majerus P. W. Diglyceride lipase: a pathway for arachidonate release from human platelets. Proc Natl Acad Sci U S A. 1979 Jul;76(7):3238–3241. doi: 10.1073/pnas.76.7.3238. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Bell R. L., Majerus P. W. Thrombin-induced hydrolysis of phosphatidylinositol in human platelets. J Biol Chem. 1980 Mar 10;255(5):1790–1792. [PubMed] [Google Scholar]
  4. Billah M. M., Lapetina E. G., Cuatrecasas P. Phospholipase A2 activity specific for phosphatidic acid. A possible mechanism for the production of arachidonic acid in platelets. J Biol Chem. 1981 Jun 10;256(11):5399–5403. [PubMed] [Google Scholar]
  5. Billah M. M., Lapetina E. G. Formation of lysophosphatidylinositol in platelets stimulated with thrombin or ionophore A23187. J Biol Chem. 1982 May 10;257(9):5196–5200. [PubMed] [Google Scholar]
  6. Broekman M. J., Ward J. W., Marcus A. J. Phospholipid metabolism in stimulated human platelets. Changes in phosphatidylinositol, phosphatidic acid, and lysophospholipids. J Clin Invest. 1980 Aug;66(2):275–283. doi: 10.1172/JCI109854. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Gerrard J. M., Peller J. D., Krick T. P., White J. G. Cyclic AMP and platelet prostaglandin synthesis. Prostaglandins. 1977 Jul;14(1):39–50. doi: 10.1016/0090-6980(77)90155-1. [DOI] [PubMed] [Google Scholar]
  8. Gorman R. R. Biochemical and pharmacological evaluation of thromboxane synthetase inhibitors. Adv Prostaglandin Thromboxane Res. 1980;6:417–425. [PubMed] [Google Scholar]
  9. Gorman R. R., Sun F. F., Miller O. V., Johnson R. A. Prostaglandins H1 and H2. Convenient biochemical synthesis and isolation. Further biological and spectroscopic characterization. Prostaglandins. 1977 Jun;13(6):1043–1053. doi: 10.1016/0090-6980(77)90132-0. [DOI] [PubMed] [Google Scholar]
  10. Hamberg M., Svensson J., Samuelsson B. Thromboxanes: a new group of biologically active compounds derived from prostaglandin endoperoxides. Proc Natl Acad Sci U S A. 1975 Aug;72(8):2994–2998. doi: 10.1073/pnas.72.8.2994. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Malmsten C., Hamberg M., Svensson J., Samuelsson B. Physiological role of an endoperoxide in human platelets: hemostatic defect due to platelet cyclo-oxygenase deficiency. Proc Natl Acad Sci U S A. 1975 Apr;72(4):1446–1450. doi: 10.1073/pnas.72.4.1446. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Mauco G., Chap H., Douste-Blazy L. Characterization and properties of a phosphatidylinositol phosphodiesterase (phospholipase C) from platelet cytosol. FEBS Lett. 1979 Apr 15;100(2):367–370. doi: 10.1016/0014-5793(79)80371-3. [DOI] [PubMed] [Google Scholar]
  13. Michell R. H. Inositol phospholipids and cell surface receptor function. Biochim Biophys Acta. 1975 Mar 25;415(1):81–47. doi: 10.1016/0304-4157(75)90017-9. [DOI] [PubMed] [Google Scholar]
  14. Miller O. V., Gorman R. R. Evidence for distinct prostaglandin I2 and D2 receptors in human platelets. J Pharmacol Exp Ther. 1979 Jul;210(1):134–140. [PubMed] [Google Scholar]
  15. Minkes M., Stanford N., Chi M. M., Roth G. J., Raz A., Needleman P., Majerus P. W. Cyclic adenosine 3',5'-monophosphate inhibits the availability of arachidonate to prostaglandin synthetase in human platelet suspensions. J Clin Invest. 1977 Mar;59(3):449–454. doi: 10.1172/JCI108659. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Palmer F. B. Chromatography of acidic phospholipids on immobilized neomycin. J Lipid Res. 1981 Nov;22(8):1296–1300. [PubMed] [Google Scholar]
  17. Rittenhouse-Simmons S., Deykin D. Isolation of membranes from normal and thrombin-treated gel-filtered platelets using a lectin marker. Biochim Biophys Acta. 1976 Apr 5;426(4):688–696. doi: 10.1016/0005-2736(76)90133-4. [DOI] [PubMed] [Google Scholar]
  18. Rittenhouse-Simmons S., Deykin D. The activation by Ca2+ of platelet phospholipase A2. Effects of dibutyryl cyclic adenosine monophosphate and 8-(N,N-diethylamino)-octyl-3,4,5-trimethoxybenzoate. Biochim Biophys Acta. 1978 Nov 1;543(4):409–422. doi: 10.1016/0304-4165(78)90296-9. [DOI] [PubMed] [Google Scholar]
  19. Rittenhouse-Simmons S. Differential activation of platelet phospholipases by thrombin and ionophore A23187. J Biol Chem. 1981 May 10;256(9):4153–4155. [PubMed] [Google Scholar]
  20. Rittenhouse-Simmons S. Indomethacin-induced accumulation of diglyceride in activated human platelets. The role of diglyceride lipase. J Biol Chem. 1980 Mar 25;255(6):2259–2262. [PubMed] [Google Scholar]
  21. Rittenhouse-Simmons S. Production of diglyceride from phosphatidylinositol in activated human platelets. J Clin Invest. 1979 Apr;63(4):580–587. doi: 10.1172/JCI109339. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Rittenhouse S. E. Preparation of selectively labeled phosphatidylinositol and assay of phosphatidylinositol-specific phospholipase C. Methods Enzymol. 1982;86:3–11. doi: 10.1016/0076-6879(82)86161-2. [DOI] [PubMed] [Google Scholar]
  23. Salomon Y., Londos C., Rodbell M. A highly sensitive adenylate cyclase assay. Anal Biochem. 1974 Apr;58(2):541–548. doi: 10.1016/0003-2697(74)90222-x. [DOI] [PubMed] [Google Scholar]
  24. Salzman E. W. Interrelation of prostaglandin endoperoxide (prostaglandin G2) and cyclic 3',5'-adenosine monophosphate in human blood platelets. Biochim Biophys Acta. 1977 Aug 25;499(1):48–60. doi: 10.1016/0304-4165(77)90227-6. [DOI] [PubMed] [Google Scholar]
  25. Schacht J. Purification of polyphosphoinositides by chromatography on immobilized neomycin. J Lipid Res. 1978 Nov;19(8):1063–1067. [PubMed] [Google Scholar]
  26. Tateson J. E., Moncada S., Vane J. R. Effects of prostacyclin (PGX) on cyclic AMP concentrations in human platelets. Prostaglandins. 1977 Mar;13(3):389–397. doi: 10.1016/0090-6980(77)90019-3. [DOI] [PubMed] [Google Scholar]
  27. Wuthier R. E. Two-dimensional chromatography on silica gel-loaded paper for the microanalysis of polar lipids. J Lipid Res. 1966 Jul;7(4):544–550. [PubMed] [Google Scholar]
  28. di Minno G., Bertelé V., Bianchi L., Barbieri B., Cerletti C., Dejana E., de Gaetano G., Silver M. J. Effects of any epoxymethano stable analogue of prostaglandin endoperoxides (U-46619) on human platelets. Thromb Haemost. 1981 Apr 30;45(2):103–106. [PubMed] [Google Scholar]

Articles from Journal of Clinical Investigation are provided here courtesy of American Society for Clinical Investigation

RESOURCES