Skip to main content
The Journal of Clinical Investigation logoLink to The Journal of Clinical Investigation
. 1983 Jun;71(6):1602–1613. doi: 10.1172/JCI110916

Specific in vitro antimannan-rich antigen of Candida albicans antibody production by sensitized human blood lymphocytes.

A Durandy, A Fischer, C Griscelli
PMCID: PMC370366  PMID: 6345586

Abstract

We have developed a new antigenic system for the induction of specific in vitro antibody response in man. The antigen used was purified from the cell wall of Candida albicans strain A and contained greater than 96% polysaccharide mannan. Peripheral blood mononuclear cells from Candida-sensitized donors produced specific antimannan antibodies during a 7-d culture in the presence of mannan absorbed with methylated bovine serum albumin. Two methods were used to detect antimannan antibody responses. Antimannan antibody-producing cells were identified by radioautography with tritiated mannan. Antibody concentration in culture supernatants was measured by an enzyme-linked immunosorbent assay. In both methods, specific IgM and IgG (but not IgA) antibodies were detected. The antibody production to mannan was specific, since an antigenically unrelated polysaccharide (pneumococcal antigen S III) did not bind to methylated bovine serum albumin-mannan-induced blast cells and did not induce antimannan antibody-containing cells. Furthermore, a pulse with an excess of unlabeled mannan abolished [3H]mannan binding, whereas an excess of unlabeled S III did not. Similarly, no antimannan antibody was obtained in influenza virus-stimulated cultures and mannan-stimulated cultures were not inducing antiinfluenza antibodies. The antimannan antibody production was shown to be a T cell-dependent phenomenon. The T helper effect appeared to be radiosensitive. It was under a genetic restriction as it occurred only in autologous or semi-identical but not in allogeneic situations. This system is relatively simple, reproducible, and well suited for the study of specific secondary in vitro antibody responses to polysaccharide antigens in humans.

Full text

PDF
1602

Images in this article

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Axelsen N. H. Analysis of human Candida precipitins by quantitative immunoelectrophoresis: a model for analysis of complex microbial antigen-antibody systems. Scand J Immunol. 1976;5(3):177–190. doi: 10.1111/j.1365-3083.1976.tb00268.x. [DOI] [PubMed] [Google Scholar]
  2. Axelsen N. H., Kirkpatrick C. H. Simultaneous characterization of free Candida antigens and Candida precipitins in a patient's serum by means of crossed immunoelectrophoresis with intermidiate gel. J Immunol Methods. 1973 Apr;2(3):245–249. doi: 10.1016/0022-1759(73)90050-1. [DOI] [PubMed] [Google Scholar]
  3. Baker P. H., Stashak P. W. Quantitative and qualitative studies on the primary antibody response to pneumococcal polysaccharides at ehe cellular level. J Immunol. 1969 Dec;103(6):1342–1348. [PubMed] [Google Scholar]
  4. Banck G., Forsgren A. Many bacterial species are mitogenic for human blood B lymphocytes. Scand J Immunol. 1978;8(4):347–354. doi: 10.1111/j.1365-3083.1978.tb00528.x. [DOI] [PubMed] [Google Scholar]
  5. Blaese R. M., Strober W., Brown R. S., Waldmann T. A. The Wiskott-Aldrich syndrome. A disorder with a possible defect in antigen processing or recognition. Lancet. 1968 May 18;1(7551):1056–1061. doi: 10.1016/s0140-6736(68)91411-6. [DOI] [PubMed] [Google Scholar]
  6. Bona C., Broder S., Dimitriu A., Waldmann T. A. Polyclonal activation of human B lymphocytes by Nocardia water soluble mitogen (NWSM). Immunol Rev. 1979;45:69–92. doi: 10.1111/j.1600-065x.1979.tb00273.x. [DOI] [PubMed] [Google Scholar]
  7. Callard R. E., Smith C. M. Histocompatibility requirements for T cell help in specific in vitro antibody responses to influenza virus by human blood lymphocytes. Eur J Immunol. 1981 Mar;11(3):206–212. doi: 10.1002/eji.1830110309. [DOI] [PubMed] [Google Scholar]
  8. Callard R. E. Specific in vitro antibody response to influenza virus by human blood lymphocytes. Nature. 1979 Dec 13;282(5740):734–736. doi: 10.1038/282734a0. [DOI] [PubMed] [Google Scholar]
  9. Delfraissy J. F., Galanaud P., Dormont J., Wallon C. Primary in vitro antibody response from human peripheral blood lymphocytes. J Immunol. 1977 Feb;118(2):630–635. [PubMed] [Google Scholar]
  10. Dosch H-M, Gelfand E. W. Generation of human plaque-forming cells in culture: tissue distribution, antigenic and cellular requirements. J Immunol. 1977 Jan;118(1):302–308. [PubMed] [Google Scholar]
  11. Durandy A., Fischer A., Griscelli C. Active suppression of B lymphocyte maturation by two different newborn T lymphocyte subsets. J Immunol. 1979 Dec;123(6):2644–2650. [PubMed] [Google Scholar]
  12. Engvall E., Perlmann P. Enzyme-linked immunosorbent assay (ELISA). Quantitative assay of immunoglobulin G. Immunochemistry. 1971 Sep;8(9):871–874. doi: 10.1016/0019-2791(71)90454-x. [DOI] [PubMed] [Google Scholar]
  13. FELTON L. D., PRESCOTT B., KAUFFMANN G., OTTINGER B. Pneumococcal antigenic polysaccharide substances from animal tissues. J Immunol. 1955 Mar;74(3):205–213. [PubMed] [Google Scholar]
  14. Fauci A. S., Pratt K. R. Activation of human B lymphocytes. I. Direct plaque-forming cell assay for the measurement of polyclonal activation and antigenic stimulation of human B lymphocytes. J Exp Med. 1976 Sep 1;144(3):674–684. doi: 10.1084/jem.144.3.674. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Fischer A., Ballet J. J., Griscelli C. Specific inhibition of in vitro Candida-induced lymphocyte proliferation by polysaccharidic antigens present in the serum of patients with chronic mucocutaneous candidiasis. J Clin Invest. 1978 Nov;62(5):1005–1013. doi: 10.1172/JCI109204. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Geha R. S., Schneeberger E., Rosen F. S., Merler E. Interaction of human thymus-derived and non-thymus-derived lymphocytes in vitro. Induction of proliferation and antibody synthesis in B lymphocytes by a soluble factor released from antigen-stimulated T lymphocytes. J Exp Med. 1973 Nov 1;138(5):1230–1247. doi: 10.1084/jem.138.5.1230. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Heijnen C. J., Uytdehaag F., Pot K. H., Ballieux R. E. Antigen-specific human T cell factors. I. T cell helper factor: biololgic properties. J Immunol. 1981 Feb;126(2):497–502. [PubMed] [Google Scholar]
  18. Hoffmann M. K. Antigen-specific induction and regulation of antibody synthesis in cultures of human peripheral blood mononuclear cells. Proc Natl Acad Sci U S A. 1980 Feb;77(2):1139–1143. doi: 10.1073/pnas.77.2.1139. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Klaus G. G., Humphrey J. H. Mechanisms of b cell triggering: studies with t cell-independent antigens. Transplant Rev. 1975;23:105–118. doi: 10.1111/j.1600-065x.1975.tb00152.x. [DOI] [PubMed] [Google Scholar]
  20. Kuritani T., Cooper M. D. Human B cell differentiation. II. Pokeweed mitogen-responsive B cells belong to a surface immunoglobulin D-negative subpopulation. J Exp Med. 1982 May 1;155(5):1561–1566. doi: 10.1084/jem.155.5.1561. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Lane H. C., Volkman D. J., Whalen G., Fauci A. S. In vitro antigen-induced, antigen-specific antibody production in man. Specific and polyclonal components, kinetics, and cellular requirements. J Exp Med. 1981 Oct 1;154(4):1043–1057. doi: 10.1084/jem.154.4.1043. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Miller R. A., Gartner S., Kaplan H. S. Stimulation of mitogenic responses in human peripheral blood lymphocytes by lipopolysaccharide: serum and T helper cell requirements. J Immunol. 1978 Dec;121(6):2160–2164. [PubMed] [Google Scholar]
  23. Mongini P. K., Paul W. E., Metcalf E. S. T cell regulation of immunoglobulin class expression in the antibody response to trinitrophenyl-ficoll. Evidence for T cell enhancement of the immunoglobulin class switch. J Exp Med. 1982 Mar 1;155(3):884–902. doi: 10.1084/jem.155.3.884. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Phan-Dinh-Tuy F., Durandy A., Griscelli C., Bach M. A. T-cell subset analysis by monoclonal antibodies in primary immunodeficiencies. Scand J Immunol. 1981 Aug;14(2):193–200. doi: 10.1111/j.1365-3083.1981.tb00199.x. [DOI] [PubMed] [Google Scholar]
  25. Ringdén O., Rynnel-Dagö B., Waterfield E. M., Möller E., Möller G. Polyclonal antibody secretion in human lymphocytes induced by killed staphylococcal bacteria and by lipopolysaccharide. Scand J Immunol. 1977;6(11):1159–1169. doi: 10.1111/j.1365-3083.1977.tb00355.x. [DOI] [PubMed] [Google Scholar]
  26. SUMMERS D. F., GROLLMAN A. P., HASENCLEVER H. F. POLYSACCHARIDE ANTIGENS OF CANDIDA CELL WALL. J Immunol. 1964 Mar;92:491–499. [PubMed] [Google Scholar]
  27. Sager D. S., Jasin H. E. Bacterial lipopolysaccharide-induced immunoglobulin synthesis by human blood lymphocytes partially depleted of monocytes. Clin Exp Immunol. 1982 Mar;47(3):645–652. [PMC free article] [PubMed] [Google Scholar]
  28. Siskind G. W., Benacerraf B. Cell selection by antigen in the immune response. Adv Immunol. 1969;10:1–50. doi: 10.1016/s0065-2776(08)60414-9. [DOI] [PubMed] [Google Scholar]
  29. Thomas Y., Rogozinski L., Irigoyen O. H., Shen H. H., Talle M. A., Goldstein G., Chess L. Functional analysis of human T cell subsets defined by monoclonal antibodies. V. Suppressor cells within the activated OKT4+ population belong to a distinct subset. J Immunol. 1982 Mar;128(3):1386–1390. [PubMed] [Google Scholar]
  30. Thomas Y., Sosman J., Irigoyen O., Friedman S. M., Kung P. C., Goldstein G., Chess L. Functional analysis of human T cell subsets defined by monoclonal antibodies. I. Collaborative T-T interactions in the immunoregulation of B cell differentiation. J Immunol. 1980 Dec;125(6):2402–2408. [PubMed] [Google Scholar]
  31. Volkman D. J., Lane H. C., Fauci A. S. Antigen-induced in vitro antibody production in humans: a model for B cell activation and immunoregulation. Proc Natl Acad Sci U S A. 1981 Apr;78(4):2528–2531. doi: 10.1073/pnas.78.4.2528. [DOI] [PMC free article] [PubMed] [Google Scholar]
  32. Wiener E., Bandieri A. Differences in antigen handling by peritoneal macrophages from the Biozzi high and low responder lines of mice. Eur J Immunol. 1974 Jul;4(7):457–463. doi: 10.1002/eji.1830040703. [DOI] [PubMed] [Google Scholar]
  33. Yarchoan R., Murphy B. R., Strober W., Schneider H. S., Nelson D. L. Specific anti-influenza virus antibody production in vitro by human peripheral blood mononuclear cells. J Immunol. 1981 Dec;127(6):2588–2594. [PubMed] [Google Scholar]

Articles from Journal of Clinical Investigation are provided here courtesy of American Society for Clinical Investigation

RESOURCES