Skip to main content
The Journal of Clinical Investigation logoLink to The Journal of Clinical Investigation
. 1983 Oct;72(4):1376–1384. doi: 10.1172/JCI111094

Tissue oxygenation and muscular substrate turnover in two subjects with high hemoglobin oxygen affinity.

B Wranne, G Berlin, L Jorfeldt, N Lund
PMCID: PMC370422  PMID: 6630512

Abstract

Oxygen transport to and substrate turnover in leg muscle were studied at rest and during light and heavy upright bicycle exercise in two brothers with a hereditary hemoglobinopathy associated with high oxygen affinity (P50 = 13 mmHg). Femoral venous oxygen tension was below normal and femoral venous oxygen saturation above normal at rest and during exercise. Thus, the arterial-femoral venous oxygen saturation difference was decreased. Despite a compensatory increase in hemoglobin concentration, the arterial-femoral venous oxygen content difference tended to be below normal at heavy exercise. Approximately 25% of the oxygen was delivered via the abnormal hemoglobin at relative heavy exercise. Arterial lactate levels, lactate release, and muscle lactate concentration were not increased at any level of exercise. Glucose, alanine, pyruvate, and glycerol turnover were essentially normal, but the glycogen and creatine phosphate stores were abnormally depleted at the termination of heavy exercise. The exercise electrocardiogram (ECG) was normal, indicating that myocardial oxygenation was adequate. Muscle-surface oxygen pressure fields were normal at rest (not investigated during exercise). It is concluded that the high oxygen affinity of the hemoglobin in our two subjects did not lead to heart or skeletal muscle hypoxia during heavy exercise, as judged from the ECG and from the leg lactate turnover. Despite the lack of evidence for muscle hypoxia, the subjects experienced leg muscle fatigue and the creatine phosphate and glycogen stores were depleted more than normally.

Full text

PDF
1376

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. ASTRAND P. O., RYHMING I. A nomogram for calculation of aerobic capacity (physical fitness) from pulse rate during sub-maximal work. J Appl Physiol. 1954 Sep;7(2):218–221. doi: 10.1152/jappl.1954.7.2.218. [DOI] [PubMed] [Google Scholar]
  2. Adamson J. W., Finch C. A. Hemoglobin function, oxygen affinity, and erythropoietin. Annu Rev Physiol. 1975;37:351–369. doi: 10.1146/annurev.ph.37.030175.002031. [DOI] [PubMed] [Google Scholar]
  3. Arturson G., Westman M. Survival of rats subjected to acute anemia at different levels of erythrocyte 2,3-diphosphoglycerate. Scand J Clin Lab Invest. 1975 Dec;35(8):745–751. doi: 10.3109/00365517509095806. [DOI] [PubMed] [Google Scholar]
  4. Bakker J. C., Gortmaker G. C., Offerijns F. G. The influence of the position of the oxygen dissociation curve on oxygen-dependent functions of the isolated perfused rat liver. II. Studies at different levels of hypoxia induced by decrease of blood flow rate. Pflugers Arch. 1976 Oct 15;366(1):45–52. doi: 10.1007/BF02486559. [DOI] [PubMed] [Google Scholar]
  5. Bakker J. C., Gortmaker G. C., de Vries-van Rossen A., Offerijns F. G. The influence of the position of the oxygen dissociation curve on oxygen-dependent functions of the isolated perfused rat liver. III. Studies at different levels of anaemic hypoxia. Pflugers Arch. 1977 Mar 11;368(1-2):63–70. doi: 10.1007/BF01063456. [DOI] [PubMed] [Google Scholar]
  6. Brooke M. H., Kaiser K. K. Three "myosin adenosine triphosphatase" systems: the nature of their pH lability and sulfhydryl dependence. J Histochem Cytochem. 1970 Sep;18(9):670–672. doi: 10.1177/18.9.670. [DOI] [PubMed] [Google Scholar]
  7. Butler W. M., Spratling L., Kark J. A., Schoomaker E. B. Hemoglobin Osler: report of a new family with exercise studies before and after phlebotomy. Am J Hematol. 1982 Dec;13(4):293–301. doi: 10.1002/ajh.2830130404. [DOI] [PubMed] [Google Scholar]
  8. CARLSON L. A., PERNOW B. Oxygen utilization and lactic acid formation in the legs at rest and during exercise in normal subjects and in patients with arteriosclerosis obliterans. Acta Med Scand. 1959 May 20;164(1):39–52. doi: 10.1111/j.0954-6820.1959.tb00163.x. [DOI] [PubMed] [Google Scholar]
  9. Dempsey J. A., Thomson J. M., Forster H. V., Cerny F. C., Chosy L. W. HbO2 dissociation in man during prolonged work in chronic hypoxia. J Appl Physiol. 1975 Jun;38(6):1022–1029. doi: 10.1152/jappl.1975.38.6.1022. [DOI] [PubMed] [Google Scholar]
  10. Hebbel R. P., Eaton J. W., Kronenberg R. S., Zanjani E. D., Moore L. G., Berger E. M. Human llamas: adaptation to altitude in subjects with high hemoglobin oxygen affinity. J Clin Invest. 1978 Sep;62(3):593–600. doi: 10.1172/JCI109165. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Jones R. T., Shih T. B. Hemoglobin variants with altered oxygen affinity. Hemoglobin. 1980;4(3-4):243–261. doi: 10.3109/03630268008996208. [DOI] [PubMed] [Google Scholar]
  12. Jorfeldt L., Juhlin-Dannfelt A. The influence of ethanol on splanchnic and skeletal muscle metabolism in man. Metabolism. 1978 Jan;27(1):97–106. doi: 10.1016/0026-0495(78)90128-2. [DOI] [PubMed] [Google Scholar]
  13. Jorfeldt L., Wahren J. Leg blood flow during exercise in man. Clin Sci. 1971 Nov;41(5):459–473. doi: 10.1042/cs0410459. [DOI] [PubMed] [Google Scholar]
  14. Karlsson J., Diamant B., Saltin B. Muscle metabolites during submaximal and maximal exercise in man. Scand J Clin Lab Invest. 1970 Dec;26(4):385–394. doi: 10.3109/00365517009046250. [DOI] [PubMed] [Google Scholar]
  15. Kessler M., Höper J., Krumme B. A. Monitoring of tissue perfusion and cellular function. Anesthesiology. 1976 Aug;45(2):184–197. doi: 10.1097/00000542-197608000-00007. [DOI] [PubMed] [Google Scholar]
  16. Lenfant C., Torrance J. D., Reynafarje C. Shift of the O2-Hb dissociation curve at altitude: mechanism and effect. J Appl Physiol. 1971 May;30(5):625–631. doi: 10.1152/jappl.1971.30.5.625. [DOI] [PubMed] [Google Scholar]
  17. Lund N., Jorfeldt L., Lewis D. H., Odman S. Skeletal muscle oxygen pressure fields in artificially ventilated, critically ill patients. Acta Anaesthesiol Scand. 1980 Oct;24(5):347–353. doi: 10.1111/j.1399-6576.1980.tb01562.x. [DOI] [PubMed] [Google Scholar]
  18. Lund N., Jorfeldt L., Lewis D. H. Skeletal muscle oxygen pressure fields in healthy human volunteers. A study of the normal state and the effects of different arterial oxygen pressures. Acta Anaesthesiol Scand. 1980 Aug;24(4):272–278. doi: 10.1111/j.1399-6576.1980.tb01548.x. [DOI] [PubMed] [Google Scholar]
  19. Malmberg P. O., Hlastala M. P., Woodson R. D. Effect of increased blood-oxygen affinity on oxygen transport in hemorrhagic shock. J Appl Physiol Respir Environ Exerc Physiol. 1979 Oct;47(4):889–895. doi: 10.1152/jappl.1979.47.4.889. [DOI] [PubMed] [Google Scholar]
  20. Nylander E., Lund N., Wranne B. Effect of increased blood oxygen affinity on skeletal muscle surface oxygen pressure fields. J Appl Physiol Respir Environ Exerc Physiol. 1983 Jan;54(1):99–104. doi: 10.1152/jappl.1983.54.1.99. [DOI] [PubMed] [Google Scholar]
  21. Poyart C., Bursaux E., Teisseire B., Freminet A., Duvelleroy M., Rosa J. Hemoglobin Creteil: oxygen transport by erythrocytes. In-vitro and in-vivo studies in a high oxygen-affinity mutant hemoglobin. Ann Intern Med. 1978 Jun;88(6):758–763. doi: 10.7326/0003-4819-88-6-758. [DOI] [PubMed] [Google Scholar]
  22. Riggs T. E., Shafer A. W., Guenter C. A. Acute changes in oxyhemoglobin affinity. Effects on oxygen transport and utilization. J Clin Invest. 1973 Oct;52(10):2660–2663. doi: 10.1172/JCI107459. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Ross B. K., Hlastala M. P. Increased hemoglobin-oxygen affinity does not decrease skeletal muscle oxygen consumption. J Appl Physiol Respir Environ Exerc Physiol. 1981 Oct;51(4):864–870. doi: 10.1152/jappl.1981.51.4.864. [DOI] [PubMed] [Google Scholar]
  24. Thomson J. M., Dempsey J. A., Chosy L. W., Shahidi N. T., Reddan W. G. Oxygen transport and oxyhemoglobin dissociation during prolonged muscular work. J Appl Physiol. 1974 Nov;37(5):658–664. doi: 10.1152/jappl.1974.37.5.658. [DOI] [PubMed] [Google Scholar]
  25. Torrance J., Jacobs P., Restrepo A., Eschbach J., Lenfant C., Finch C. A. Intraerythrocytic adaptation to anemia. N Engl J Med. 1970 Jul 23;283(4):165–169. doi: 10.1056/NEJM197007232830402. [DOI] [PubMed] [Google Scholar]
  26. Woodson R. D., Fitzpatrick J. H., Jr, Costello D. J., Gilboe D. D. Increased blood oxygen affinity decreases canine brain oxygen consumption. J Lab Clin Med. 1982 Sep;100(3):411–424. [PubMed] [Google Scholar]
  27. Woodson R. D., Torrance J. D., Shappell S. D., Lenfant C. The effect of cardiac disease on hemoglobin-oxygen binding. J Clin Invest. 1970 Jul;49(7):1349–1356. doi: 10.1172/JCI106351. [DOI] [PMC free article] [PubMed] [Google Scholar]
  28. Woodson R. D., Wranne B., Detter J. C. Effect of increased blood oxygen affinity on work performance of rats. J Clin Invest. 1973 Nov;52(11):2717–2724. doi: 10.1172/JCI107466. [DOI] [PMC free article] [PubMed] [Google Scholar]
  29. Wranne B., Nordgren L., Woodson R. D. Increased blood oxygen affinity and physical work capacity in man. Scand J Clin Lab Invest. 1974 Jun;33(4):347–352. doi: 10.1080/00365517409082505. [DOI] [PubMed] [Google Scholar]
  30. Yhap E. O., Wright C. B., Popovic N. A., Alix E. C. Decreased oxygen uptake with stored blood in the isolated hindlimb. J Appl Physiol. 1975 May;38(5):882–885. doi: 10.1152/jappl.1975.38.5.882. [DOI] [PubMed] [Google Scholar]

Articles from Journal of Clinical Investigation are provided here courtesy of American Society for Clinical Investigation

RESOURCES