Skip to main content
The Journal of Clinical Investigation logoLink to The Journal of Clinical Investigation
. 1984 Aug;74(2):321–331. doi: 10.1172/JCI111427

Role of arginine vasopressin and angiotensin II in cardiovascular responses to combined acute hypoxemia and hypercapnic acidosis in conscious dogs.

C E Rose Jr, R L Godine Jr, K Y Rose, R J Anderson, R M Carey
PMCID: PMC370482  PMID: 6547729

Abstract

The physiological relationship of increased circulating angiotensin II and vasopressin to circulatory changes during combined hypoxemia and hypercapnic acidosis is unclear. To evaluate the role(s) of angiotensin II and vasopressin, seven unanesthetized female mongrel dogs with controlled sodium intake (80 meq/24 h X 4 d) were studied during 40 min of combined acute hypoxemia and hypercapnic acidosis (PaO2, 36 +/- 1 mmHg; PaCO2, 55 +/- 2 mmHg; pH = 7.16 +/- 0.04) under the following conditions: (a) intact state with infusion of vehicles alone; (b) beta-adrenergic blockade with infusion of d,l-propranolol (1.0 mg/kg bolus, 0.5 mg/kg per h); of the vasopressin pressor antagonist d-(CH2)5Tyr(methyl)arginine-vasopressin (10 micrograms/kg); and (d) simultaneous vasopressin pressor and angiotensin II inhibition with the additional infusion of 1-sarcosine, 8-alanine angiotensin II (2.0 micrograms/kg per min). The rise in mean arterial pressure during the combined blood-gas derangement with vehicles appeared to be related to increased cardiac output, since total peripheral resistance fell. Beta-adrenergic blockade abolished the fall in total peripheral resistance and diminished the rise in cardiac output during combined hypoxemia and hypercapnic acidosis, but the systemic pressor response was unchanged. In addition, the rise in mean arterial pressure during the combined blood-gas derangement was unaltered with vasopressin pressor antagonism alone. In contrast, the simultaneous administration of the vasopressin pressor and angiotensin II inhibitors during combined hypoxemia and hypercapnic acidosis resulted in the abrogation of the overall systemic pressor response despite increased cardiac output, owing to a more pronounced fall in total peripheral resistance. Circulating catecholamines were increased during the combined blood-gas derangement with vasopressin pressor and angiotensin II blockade, suggesting that the abolition of the systemic pressor response in the last 30 min of combined hypoxemia and hypercapnic acidosis was not related to diminished activity of the sympathetic nervous system. These studies show that vasopressin and angiotensin II are major contributors to the systemic pressor response during combined acute hypoxemia and hypercapnic acidosis.

Full text

PDF
321

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Anderson R. J., Pluss R. G., Berns A. S., Jackson J. T., Arnold P. E., Schrier R. W., McDonald K. E. Mechanism of effect of hypoxia on renal water excretion. J Clin Invest. 1978 Oct;62(4):769–777. doi: 10.1172/JCI109188. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Anderson R. J., Rose C. E., Jr, Berns A. S., Erickson A. L., Arnold P. E. Mechanism of effect of hypercapnic acidosis on renin secretion in the dog. Am J Physiol. 1980 Feb;238(2):F119–F125. doi: 10.1152/ajprenal.1980.238.2.F119. [DOI] [PubMed] [Google Scholar]
  3. Andrews C. E., Jr, Brenner B. M. Relative contributions of arginine vasopressin and angiotensin II to maintenance of systemic arterial pressure in the anesthetized water-deprived rat. Circ Res. 1981 Feb;48(2):254–258. doi: 10.1161/01.res.48.2.254. [DOI] [PubMed] [Google Scholar]
  4. Berns A. S., Anderson R. J., McDonald K. M., Arnold P. E. Effect of hypercapnic acidosis on renal water excretion in the dog. Kidney Int. 1979 Feb;15(2):116–125. doi: 10.1038/ki.1979.17. [DOI] [PubMed] [Google Scholar]
  5. Bonjour J. P., Malvin R. L. Stimulation of ADH release by the renin-angiotensin system. Am J Physiol. 1970 Jun;218(6):1555–1559. doi: 10.1152/ajplegacy.1970.218.6.1555. [DOI] [PubMed] [Google Scholar]
  6. Claybaugh J. R., Share L. Role of the renin-angiotensin system in the vasopressin response to hemorrhage. Endocrinology. 1972 Feb;90(2):453–460. doi: 10.1210/endo-90-2-453. [DOI] [PubMed] [Google Scholar]
  7. GOWDEY C. W., PATEL Y. J. RESPONSES TO ADRENALINE AND NORADRENALINE IN CATS DURING HYPOXIA, HYPERVENTILATION AND HYPEROXIA. Arch Int Pharmacodyn Ther. 1964 Jul 1;150:67–84. [PubMed] [Google Scholar]
  8. Hammill S. C., Wagner W. W., Jr, Latham L. P., Frost W. W., Weil J. V. Autonomic cardiovascular control during hypoxia in the dog. Circ Res. 1979 Apr;44(4):569–575. doi: 10.1161/01.res.44.4.569. [DOI] [PubMed] [Google Scholar]
  9. Hjemdahl P., Daleskog M., Kahan T. Determination of plasma catecholamines by high performance liquid chromatography with electrochemical detection: comparison with a radioenzymatic method. Life Sci. 1979 Jul 9;25(2):131–138. doi: 10.1016/0024-3205(79)90384-9. [DOI] [PubMed] [Google Scholar]
  10. Kissinger P. T., Riggin R. M., Alcorn R. L., Rau L. D. Estimation of catecholamines in urine by high performance liquid chromatography with electrochemical detection. Biochem Med. 1975 Aug;13(4):299–306. doi: 10.1016/0006-2944(75)90168-4. [DOI] [PubMed] [Google Scholar]
  11. Kruszynski M., Lammek B., Manning M., Seto J., Haldar J., Sawyer W. H. [1-beta-Mercapto-beta,beta-cyclopentamethylenepropionic acid),2-(O-methyl)tyrosine ]argine-vasopressin and [1-beta-mercapto-beta,beta-cyclopentamethylenepropionic acid)]argine-vasopressine, two highly potent antagonists of the vasopressor response to arginine-vasopressin. J Med Chem. 1980 Apr;23(4):364–368. doi: 10.1021/jm00178a003. [DOI] [PubMed] [Google Scholar]
  12. Levens N. R., Freedlender A. E., Peach M. J., Carey R. M. Control of renal function by intrarenal angiotensin II. Endocrinology. 1983 Jan;112(1):43–49. doi: 10.1210/endo-112-1-43. [DOI] [PubMed] [Google Scholar]
  13. NAHAS G. G., CAVERT H. M. Cardiac depressant effect of CO2 and its reversal. Am J Physiol. 1957 Sep;190(3):483–491. doi: 10.1152/ajplegacy.1957.190.3.483. [DOI] [PubMed] [Google Scholar]
  14. NAHAS G. G., MATHER G. W., WARGO J. D., ADAMS W. L. Influence of acute hypoxia on sympathectomized and adrenalectomized dogs. Am J Physiol. 1954 Apr;177(1):13–15. doi: 10.1152/ajplegacy.1954.177.1.13. [DOI] [PubMed] [Google Scholar]
  15. PAGE I. H., OLMSTED F. The influence of respiratory gas mixtures on arterial pressure and vascular reactivity in normal and hypertensive dogs. Circulation. 1951 Jun;3(6):801–819. doi: 10.1161/01.cir.3.6.801. [DOI] [PubMed] [Google Scholar]
  16. Rose C. E., Jr, Althaus J. A., Kaiser D. L., Miller E. D., Carey R. M. Acute hypoxemia and hypercapnia: increase in plasma catecholamines in conscious dogs. Am J Physiol. 1983 Dec;245(6):H924–H929. doi: 10.1152/ajpheart.1983.245.6.H924. [DOI] [PubMed] [Google Scholar]
  17. Rose C. E., Jr, Anderson R. J., Carey R. M. Antidiuresis and vasopressin release with hypoxemia and hypercapnia in conscious dogs. Am J Physiol. 1984 Jul;247(1 Pt 2):R127–R134. doi: 10.1152/ajpregu.1984.247.1.R127. [DOI] [PubMed] [Google Scholar]
  18. Rose C. E., Jr, Kimmel D. P., Godine R. L., Jr, Kaiser D. L., Carey R. M. Synergistic effects of acute hypoxemia and hypercapnic acidosis in conscious dogs. Renal dysfunction and activation of the renin-angiotensin system. Circ Res. 1983 Aug;53(2):202–213. doi: 10.1161/01.res.53.2.202. [DOI] [PubMed] [Google Scholar]
  19. Schwartz J., Reid I. A. Effect of vasopressin blockade on blood pressure regulation during hemorrhage in conscious dogs. Endocrinology. 1981 Nov;109(5):1778–1780. doi: 10.1210/endo-109-5-1778. [DOI] [PubMed] [Google Scholar]
  20. Schwartz J., Reid I. A. Role of vasopressin in blood pressure regulation in conscious water-deprived dogs. Am J Physiol. 1983 Jan;244(1):R74–R77. doi: 10.1152/ajpregu.1983.244.1.R74. [DOI] [PubMed] [Google Scholar]
  21. Stalcup S. A., Lipset J. S., Woan J. M., Leuenberger P., Mellins R. B. Inhibition of angiotensin converting enzyme activity in cultured endothelial cells by hypoxia. J Clin Invest. 1979 May;63(5):966–976. doi: 10.1172/JCI109397. [DOI] [PMC free article] [PubMed] [Google Scholar] [Retracted]
  22. Tagawa H., Vander A. J., Bonjour J. P., Malvin R. L. Inhibition of renin secretion by vasopressin in unanesthetized sodium-deprived dogs. Am J Physiol. 1971 Apr;220(4):949–951. doi: 10.1152/ajplegacy.1971.220.4.949. [DOI] [PubMed] [Google Scholar]

Articles from Journal of Clinical Investigation are provided here courtesy of American Society for Clinical Investigation

RESOURCES