Abstract
The purpose of this study was to assess the effects of combined hypoxia and hypercapnia and of severe asphyxia on lung water balance and protein transport in newborn lambs. We studied ten 2-4-wk-old anesthetized lambs which were mechanically ventilated first with air for 2-3 h, then with 10-12% oxygen in nitrogen for 2-4 h, and then with 10-12% oxygen and 10-12% carbon dioxide in nitrogen for 2-4 h. Next we stopped their breathing for 1-2 min to produce severe asphyxia, after which we followed their recovery in air for 2-4 h. In 5 of the 10 lambs we intravenously injected radioactive albumin and measured its turnover time between plasma and lymph during the baseline period and after recovery from asphyxia. During alveolar hypoxia alone, mean pulmonary arterial pressure increased 60% and lung lymph flow increased 74%, whereas lymph protein concentration decreased from 3.47 +/- 0.13 to 2.83 +/- 0.15 g/dl. Cardiac output, left atrial pressure, and plasma protein concentration did not change. When carbon dioxide was added to the inspired gas mixture, pulmonary arterial pressure increased 22%, cardiac output increased 13%, lung lymph flow increased 33%, and lymph protein concentration decreased from 2.83 +/- 0.15 to 2.41 +/- 0.13 g/dl. Left atrial pressure and plasma protein concentration did not change. After 60-90 s of induced asphyxia, vascular pressures and lung lymph flow rapidly returned to values the same as those obtained during the baseline period. The turnover time for radioactive albumin between plasma and lymph was the same between the baseline and recovery periods (185 +/- 16 vs. 179 +/- 12 min). The ratio of albumin to globulin in lymph relative to the same ratio in plasma did not change during any phase of these experiments. Five lambs killed after recovery from asphyxia had significantly less blood and extravascular water in their lungs than control lambs had. We conclude that in the newborn lamb both alveolar hypoxia and alveolar hypoxia with hypercapnia increase lung lymph flow by increasing filtration pressure in the microcirculation, but neither hypoxia with hypercapnia nor brief severe asphyxia alters the protein permeability of the pulmonary microcirculation.
Full text
PDF






Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Adamson T. M., Boyd R. D., Hill J. R., Normand I. C., Reynolds E. O., Strang L. B. Effect of asphyxia due to umbilical cord occlusion in the foetal lamb on leakage of liquid from the circulation and on permeability of lung capillaries to albumin. J Physiol. 1970 Apr;207(2):493–505. doi: 10.1113/jphysiol.1970.sp009075. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Barie P. S., Hakim T. S., Malik A. B. Effect of pulmonary artery occlusion and reperfusion on extravascular fluid accumulation. J Appl Physiol Respir Environ Exerc Physiol. 1981 Jan;50(1):102–106. doi: 10.1152/jappl.1981.50.1.102. [DOI] [PubMed] [Google Scholar]
- Binder A. S., Kageler W., Perel A., Flick M. R., Staub N. C. Effect of platelet depletion on lung vascular permeability after microemboli in sheep. J Appl Physiol Respir Environ Exerc Physiol. 1980 Mar;48(3):414–420. doi: 10.1152/jappl.1980.48.3.414. [DOI] [PubMed] [Google Scholar]
- Bland R. D., Bressack M. A., Haberkern C. M., Hansen T. N. Lung fluid balance in hypoxic, awake newborn lambs and mature sheep. Biol Neonate. 1980;38(5-6):221–228. doi: 10.1159/000241369. [DOI] [PubMed] [Google Scholar]
- Bland R. D., Hansen T. A., Hazinski T. A., Haberkern C. M., Bressack M. A. Studies of lung fluid balance in newborn lambs. Ann N Y Acad Sci. 1982;384:126–145. doi: 10.1111/j.1749-6632.1982.tb21368.x. [DOI] [PubMed] [Google Scholar]
- Bland R. D., McMillan D. D. Lung fluid dynamics in awake newborn lambs. J Clin Invest. 1977 Nov;60(5):1107–1115. doi: 10.1172/JCI108862. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Boonyaprakob U., Taylor P. M., Watson D. W., Waterman V., Lopata E. Hypoxia and protein clearance from the pulmonary vascular beds of adult dogs and pups. Am J Physiol. 1969 May;216(5):1013–1019. doi: 10.1152/ajplegacy.1969.216.5.1013. [DOI] [PubMed] [Google Scholar]
- Bressack M. A., Bland R. D. Alveolar hypoxia increases lung fluid filtration in unanesthetized newborn lambs. Circ Res. 1980 Jan;46(1):111–116. doi: 10.1161/01.res.46.1.111. [DOI] [PubMed] [Google Scholar]
- Bressack M. A., McMillan D. D., Bland R. D. Pulmonary oxygen toxicity: increased microvascular permeability to protein in unanesthetized lambs. Lymphology. 1979 Sep;12(3):133–139. [PubMed] [Google Scholar]
- Brigham K. L., Woolverton W. C., Blake L. H., Staub N. C. Increased sheep lung vascular permeability caused by pseudomonas bacteremia. J Clin Invest. 1974 Oct;54(4):792–804. doi: 10.1172/JCI107819. [DOI] [PMC free article] [PubMed] [Google Scholar]
- COURTICE F. C., KORNER P. I. The effect of anoxia on pulmonary oedema produced by massive intravenous infusions. Aust J Exp Biol Med Sci. 1952 Dec;30(6):511–526. doi: 10.1038/icb.1952.49. [DOI] [PubMed] [Google Scholar]
- Capen R. L., Wagner W. W., Jr Intrapulmonary blood flow redistribution during hypoxia increases gas exchange surface area. J Appl Physiol Respir Environ Exerc Physiol. 1982 Jun;52(6):1575–1580. doi: 10.1152/jappl.1982.52.6.1575. [DOI] [PubMed] [Google Scholar]
- Dawson A. Regional lung function during early acclimatization to 3,100 m altitude. J Appl Physiol. 1972 Aug;33(2):218–223. doi: 10.1152/jappl.1972.33.2.218. [DOI] [PubMed] [Google Scholar]
- Dawson A. Regional pulmonary blood flow in sitting and supine man during and after acute hypoxia. J Clin Invest. 1969 Feb;48(2):301–310. doi: 10.1172/JCI105986. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Dugard A., Naimark A. Effect of hypoxia on distribution of pulmonary blood flow. J Appl Physiol. 1967 Nov;23(5):663–671. doi: 10.1152/jappl.1967.23.5.663. [DOI] [PubMed] [Google Scholar]
- Erdmann A. J., 3rd, Vaughan T. R., Jr, Brigham K. L., Woolverton W. C., Staub N. C. Effect of increased vascular pressure on lung fluid balance in unanesthetized sheep. Circ Res. 1975 Sep;37(3):271–284. doi: 10.1161/01.res.37.3.271. [DOI] [PubMed] [Google Scholar]
- Gorin A. B., Gould J. Immunoglobulin synthesis in the lungs and caudal mediastinal lymph node of sheep. J Immunol. 1979 Sep;123(3):1339–1342. [PubMed] [Google Scholar]
- Haab P., Held D. R., Ernst H., Farhi L. E. Ventilation-perfusion relationships during high-altitude adatation. J Appl Physiol. 1969 Jan;26(1):77–81. doi: 10.1152/jappl.1969.26.1.77. [DOI] [PubMed] [Google Scholar]
- Haberkern C. M., Bland R. D. Effect of hypercapnia on net filtration of fluid in the lungs of awake newborn lambs. J Appl Physiol Respir Environ Exerc Physiol. 1981 Aug;51(2):423–427. doi: 10.1152/jappl.1981.51.2.423. [DOI] [PubMed] [Google Scholar]
- Hansen T. N., Haberkern C. M., Hazinski T. A., Bland R. D. Lung fluid balance in hypoxic lambs. Pediatr Res. 1984 May;18(5):434–440. doi: 10.1203/00006450-198405000-00009. [DOI] [PubMed] [Google Scholar]
- Humphreys P. W., Normand I. C., Reynolds E. O., Strang L. B. Pulmonary lymph flow and the uptake of liquid from the lungs of the lamb at the start of breathing. J Physiol. 1967 Nov;193(1):1–29. doi: 10.1113/jphysiol.1967.sp008340. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Hyman A. L. Effects of large increases in pulmonary blood flow on pulmonary venous pressure. J Appl Physiol. 1969 Aug;27(2):179–185. doi: 10.1152/jappl.1969.27.2.179. [DOI] [PubMed] [Google Scholar]
- LANCE J. S., LATTA H. Hypoxia, atelectasis and pulmonary edema. The role of hypoxia in the production of pulmonary edema, atelectasis, and hyaline membranes. Arch Pathol. 1963 Apr;75:373–377. [PubMed] [Google Scholar]
- Mitzner W., Sylvester J. T. Hypoxic vasoconstriction and fluid filtration in pig lungs. J Appl Physiol Respir Environ Exerc Physiol. 1981 Nov;51(5):1065–1071. doi: 10.1152/jappl.1981.51.5.1065. [DOI] [PubMed] [Google Scholar]
- Nicolaysen G., Nicolaysen A., Staub N. C. A quantitative radioautographic comparison of albumin concentration in different dized lymph vessels in normal mouse lungs. Microvasc Res. 1975 Sep;10(2):138–152. doi: 10.1016/0026-2862(75)90002-3. [DOI] [PubMed] [Google Scholar]
- O'Brodovich H. M., Stalcup S. A., Pang L. M., Lipset J. S., Mellins R. B. Bradykinin production and increased pulmonary endothelial permeability during acute respiratory failure in unanesthetized sheep. J Clin Invest. 1981 Feb;67(2):514–522. doi: 10.1172/JCI110061. [DOI] [PMC free article] [PubMed] [Google Scholar] [Retracted]
- PEARCE M. L., YAMASHITA J., BEAZELL J. MEASUREMENT OF PULMONARY EDEMA. Circ Res. 1965 May;16:482–488. doi: 10.1161/01.res.16.5.482. [DOI] [PubMed] [Google Scholar]
- Pang L. M., Rodriguez-Martinez F., Stalcup S. A., Mellins R. B. Effect of hyperinflation and atelectasis on fluid accumulation in the puppy lung. J Appl Physiol Respir Environ Exerc Physiol. 1978 Aug;45(2):284–288. doi: 10.1152/jappl.1978.45.2.284. [DOI] [PubMed] [Google Scholar]
- Staub N. C., Bland R. D., Brigham K. L., Demling R., Erdmann A. J., 3rd, Woolverton W. C. Preparation of chronic lung lymph fistulas in sheep. J Surg Res. 1975 Nov;19(5):315–320. doi: 10.1016/0022-4804(75)90056-6. [DOI] [PubMed] [Google Scholar]
- Staub N. C. Pulmonary edema. Physiol Rev. 1974 Jul;54(3):678–811. doi: 10.1152/physrev.1974.54.3.678. [DOI] [PubMed] [Google Scholar]
- Viswanathan R., Subramanian S., Radha T. G. Effect of hypoxia on regional lung perfusion, by scanning. Respiration. 1979;37(3):142–147. doi: 10.1159/000194023. [DOI] [PubMed] [Google Scholar]
- Vreim C. R., Snashall P. D., Demling R. H., Staub N. C. Lung lymph and free interstitial fluid protein composition in sheep with edema. Am J Physiol. 1976 Jun;230(6):1650–1653. doi: 10.1152/ajplegacy.1976.230.6.1650. [DOI] [PubMed] [Google Scholar]
