Skip to main content
The Journal of Clinical Investigation logoLink to The Journal of Clinical Investigation
. 1984 Aug;74(2):589–599. doi: 10.1172/JCI111456

Calcium exchange and ionized cytoplasmic calcium in resting and activated human monocytes.

S P Scully, G B Segel, M A Lichtman
PMCID: PMC370511  PMID: 6086717

Abstract

We have performed a comprehensive study of calcium tracer flux, distribution, content, and ionized cytoplasmic calcium during monocyte activation. A model of monocyte calcium was developed from 45Ca uptake and exodus curves which indicated that cell calcium was partitioned between three compartments. The magnitude of the time constants for each pool lead us to propose cellular locations for these three compartments: a surface plasma membrane pool, a cytoplasmic pool, and an organelle pool. 45Ca uptake and exodus experiments were analyzed using a nonlinear least squares fit of compartmental exchange rates and sizes. The production of superoxide was used as a reflection of the state of activation of the monocytes treated with Concanavalin A (Con A). We found that Con A-treated monocytes have an increase in the calcium exchange rate with the cytoplasmic pool from 0.04 to 0.07/min (P less than 0.05), and an increase in the size of the cytoplasmic pool from 0.08 to 0.13 pmol/cell (P less than 0.05). There were no significant changes in the exchange rates or sizes associated with either of the other two compartments. The cytoplasmic ionized calcium was measured with the fluorescent probe, Quin 2, which indicated a resting level of 83 nM free calcium in unadhered monocytes. Con A stimulation caused a doubling of the cytoplasmic free calcium to 163 nM within 45 s. This increment in cytoplasmic free calcium preceded the onset of superoxide following Con A treatment. These studies indicate that Con A binding to the plasma membrane increases the monocyte plasma membrane permeability to calcium. External calcium enters the cell at an increased rate and contributes to both internally bound and free calcium. The magnitude of the increase in free calcium is proportional to the concentration of Con A and stimulates calcium extrusion via the calcium transport ATPase. Moreover, there is an increased concentration of ionized cytoplasmic calcium which has the potential to interact with other cellular regulators that modulate cell activation and superoxide production.

Full text

PDF
589

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Allwood G., Asherson G. L., Davey M. J., Goodford P. J. The early uptake of radioactive calcium by human lymphocytes treated with phytohaemagglutinin. Immunology. 1971 Sep;21(3):509–516. [PMC free article] [PubMed] [Google Scholar]
  2. Borle A. B. Control, Modulation, and regulation of cell calcium. Rev Physiol Biochem Pharmacol. 1981;90:13–153. doi: 10.1007/BFb0034078. [DOI] [PubMed] [Google Scholar]
  3. Brass L. F., Shattil S. J. Changes in surface-bound and exchangeable calcium during platelet activation. J Biol Chem. 1982 Dec 10;257(23):14000–14005. [PubMed] [Google Scholar]
  4. Böyum A. Isolation of mononuclear cells and granulocytes from human blood. Isolation of monuclear cells by one centrifugation, and of granulocytes by combining centrifugation and sedimentation at 1 g. Scand J Clin Lab Invest Suppl. 1968;97:77–89. [PubMed] [Google Scholar]
  5. Cohen H. J., Chovaniec M. E. Superoxide production by digitonin-stimulated guinea pig granulocytes. The effects of N-ethyl maleimide, divalent cations; and glycolytic and mitochondrial inhibitors on the activation of the superoxide generating system. J Clin Invest. 1978 Apr;61(4):1088–1096. doi: 10.1172/JCI109008. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Deutsch C., Price M. A. Cell calcium in human peripheral blood lymphocytes and the effect of mitogen. Biochim Biophys Acta. 1982 May 7;687(2):211–218. doi: 10.1016/0005-2736(82)90548-x. [DOI] [PubMed] [Google Scholar]
  7. Freedman M. H., Raff M. C. Induction of increased calcium uptake in mouse T lymphocytes by concanavalin A and its modulation by cyclic nucleotides. Nature. 1975 May 29;255(5507):378–382. doi: 10.1038/255378a0. [DOI] [PubMed] [Google Scholar]
  8. Fridovich I. The biology of oxygen radicals. Science. 1978 Sep 8;201(4359):875–880. doi: 10.1126/science.210504. [DOI] [PubMed] [Google Scholar]
  9. Hesketh T. R., Smith G. A., Moore J. P., Taylor M. V., Metcalfe J. C. Free cytoplasmic calcium concentration and the mitogenic stimulation of lymphocytes. J Biol Chem. 1983 Apr 25;258(8):4876–4882. [PubMed] [Google Scholar]
  10. Hoffstein S. T. Ultrastructural demonstration of calcium loss from local regions of the plasma membrane of surface-stimulated human granulocytes. J Immunol. 1979 Sep;123(3):1395–1402. [PubMed] [Google Scholar]
  11. Holian A., Daniele R. P. The role of calcium in the initiation of superoxide release from alveolar macrophages. J Cell Physiol. 1982 Oct;113(1):87–93. doi: 10.1002/jcp.1041130115. [DOI] [PubMed] [Google Scholar]
  12. Larner A., Rebhun L. I., Larner J., Oron Y. Concanavalin A-stimulated Ca2+ uptake in rat splenocytes. Mol Cell Biochem. 1980 Nov 20;32(3):123–130. doi: 10.1007/BF00227438. [DOI] [PubMed] [Google Scholar]
  13. Lichtman A. H., Segel G. B., Lichtman M. A. An ultrasensitive method for the measurement of human leukocyte calcium: lymphocytes. Clin Chim Acta. 1979 Oct 1;97(2-3):107–121. doi: 10.1016/0009-8981(79)90407-8. [DOI] [PubMed] [Google Scholar]
  14. Lichtman A. H., Segel G. B., Lichtman M. A. Total and exchangeable calcium in lymphocytes: effects of PHA and A23187. J Supramol Struct. 1980;14(1):65–75. doi: 10.1002/jss.400140107. [DOI] [PubMed] [Google Scholar]
  15. Naccache P. H., Showell H. J., Becker E. L., Sha'afi R. I. Transport of sodium, potassium, and calcium across rabbit polymorphonuclear leukocyte membranes. Effect of chemotactic factor. J Cell Biol. 1977 May;73(2):428–444. doi: 10.1083/jcb.73.2.428. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Onozaki K., Takenawa T., Homma Y., Hashimoto T. The mechanism of macrophage activation induced by Ca2+ ionophore. Cell Immunol. 1983 Feb 1;75(2):242–254. doi: 10.1016/0008-8749(83)90323-4. [DOI] [PubMed] [Google Scholar]
  17. Parker C. W. Correlation between mitogenicity and stimulation of calcium uptake in human lymphocytes. Biochem Biophys Res Commun. 1974 Dec 23;61(4):1180–1186. doi: 10.1016/s0006-291x(74)80408-0. [DOI] [PubMed] [Google Scholar]
  18. Petroski R. J., Naccache P. H., Becker E. L., Sha'afi R. I. Effect of chemotactic factors on calcium levels of rabbit neutrophils. Am J Physiol. 1979 Jul;237(1):C43–C49. doi: 10.1152/ajpcell.1979.237.1.C43. [DOI] [PubMed] [Google Scholar]
  19. Scully S. P., Segel G. B., Lichtman M. A. Plasma membrane vesicles prepared from unadhered monocytes: characterization of calcium transport and the calcium ATPase. Cell Calcium. 1982 Dec;3(6):515–530. doi: 10.1016/0143-4160(82)90042-2. [DOI] [PubMed] [Google Scholar]
  20. Segel G. B., Lichtman M. A., Gordon B. R., MacPherson J. L., Nusbacher J. Plateletpheresis residues: a source of large quantities of human blood lymphocytes. Transfusion. 1976 Sep-Oct;16(5):455–459. doi: 10.1046/j.1537-2995.1976.16577039302.x. [DOI] [PubMed] [Google Scholar]
  21. Segel G. B., Lichtman M. A. Potasssium transport in human blood lymphocytes treated with phytohemagglutinin. J Clin Invest. 1976 Dec;58(6):1358–1369. doi: 10.1172/JCI108591. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Sha'afi R. I., Naccache P. H., Alobaidi T., Molski T. F., Volpi M. Effect of arachidonic acid and the chemotactic factor F-Met-Leu-Phe on cation transport in rabbit neutrophils. J Cell Physiol. 1981 Feb;106(2):215–223. doi: 10.1002/jcp.1041060207. [DOI] [PubMed] [Google Scholar]
  23. Simon W. A method of exponential separation applicable to small computers. Phys Med Biol. 1970 Apr;15(2):355–360. doi: 10.1088/0031-9155/15/2/008. [DOI] [PubMed] [Google Scholar]
  24. Tsien R. Y., Pozzan T., Rink T. J. Calcium homeostasis in intact lymphocytes: cytoplasmic free calcium monitored with a new, intracellularly trapped fluorescent indicator. J Cell Biol. 1982 Aug;94(2):325–334. doi: 10.1083/jcb.94.2.325. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. Whitney R. B., Sutherland R. M. Enhanced uptake of calcium by transforming lymphocytes. Cell Immunol. 1972 Sep;5(1):137–147. doi: 10.1016/0008-8749(72)90091-3. [DOI] [PubMed] [Google Scholar]
  26. Wolff C. H., Akerman K. E. Concanavalin A binding and Ca2+ fluxes in rat spleen cells. Biochim Biophys Acta. 1982 Dec 22;693(2):315–319. doi: 10.1016/0005-2736(82)90437-0. [DOI] [PubMed] [Google Scholar]

Articles from Journal of Clinical Investigation are provided here courtesy of American Society for Clinical Investigation

RESOURCES