Skip to main content
The Journal of Clinical Investigation logoLink to The Journal of Clinical Investigation
. 1986 Jun;77(6):1831–1840. doi: 10.1172/JCI112509

Fibronectin mediates adherence of rat alveolar type II epithelial cells via the fibroblastic cell-attachment domain.

R A Clark, R J Mason, J M Folkvord, J A McDonald
PMCID: PMC370541  PMID: 3519680

Abstract

The lung alveolar surface is composed of types I and II epithelial cells. Extremely attenuated type I cells cover 90% of the surface and are prone to necrosis during acute lung injury. After denudation of type I cells, the alveolar epithelium is restored by proliferation of type II cells. During reepithelialization in vivo the type II cells have been observed to reorganize on an extracellular matrix that contains fibronectin. We thus sought to determine whether type II cells would adhere to purified fibronectin. Adherence assays of primary rat type II cells were performed in protein-coated bacteriologic microtiter wells for 24 h at 37 degrees C. Concentrations of fibronectin from 1 to 300 micrograms/ml mediated type II cell adherence, 10 micrograms/ml gave maximal adherence, and 4 micrograms/ml gave 50% maximal adherence. Adherence progressively increased from 1 to 72 h. Adherence on fibronectin was at least 50% greater than adherence on laminin, types I and III collagen, or IV collagen. Little or no adherence was observed on bacteriologic plastic or albumin. Spreading on these various substrata paralleled adherence. Adherence to fibronectin, laminin, and fibrinogen was specifically blocked by their respective polyclonal antibodies. Monoclonal antibodies (MoAb) to the fibronectin cell-attachment domain blocked adherence to fibronectin, whereas MoAb to other domains did not. From the data reported here and the previously mentioned in vivo study we propose that fibronectin is an important functional component of the extracellular matrix that supports type II cells during alveolar reepithelialization.

Full text

PDF
1831

Images in this article

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Aplin J. D., Campbell S., Foden L. J. Adhesion of human amnion epithelial cells to extracellular matrix. Evidence for multiple mechanisms. Exp Cell Res. 1984 Aug;153(2):425–438. doi: 10.1016/0014-4827(84)90611-6. [DOI] [PubMed] [Google Scholar]
  2. Burrill P. H., Bernardini I., Kleinman H. K., Kretchmer N. Effect of serum, fibronectin, and laminin on adhesion of rabbit intestinal epithelial cells in culture. J Supramol Struct Cell Biochem. 1981;16(4):385–392. doi: 10.1002/jsscb.1981.380160409. [DOI] [PubMed] [Google Scholar]
  3. Butler W. B. Preparing nuclei from cells in monolayer cultures suitable for counting and for following synchronized cells through the cell cycle. Anal Biochem. 1984 Aug 15;141(1):70–73. doi: 10.1016/0003-2697(84)90426-3. [DOI] [PubMed] [Google Scholar]
  4. Carlsson R., Engvall E., Freeman A., Ruoslahti E. Laminin and fibronectin in cell adhesion: enhanced adhesion of cells from regenerating liver to laminin. Proc Natl Acad Sci U S A. 1981 Apr;78(4):2403–2406. doi: 10.1073/pnas.78.4.2403. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Clark R. A., Dvorak H. F., Colvin R. B. Fibronectin in delayed-type hypersensitivity skin reactions: associations with vessel permeability and endothelial cell activation. J Immunol. 1981 Feb;126(2):787–793. [PubMed] [Google Scholar]
  6. Clark R. A., Folkvord J. M., Wertz R. L. Fibronectin, as well as other extracellular matrix proteins, mediate human keratinocyte adherence. J Invest Dermatol. 1985 May;84(5):378–383. doi: 10.1111/1523-1747.ep12265466. [DOI] [PubMed] [Google Scholar]
  7. Clark R. A., Lanigan J. M., DellaPelle P., Manseau E., Dvorak H. F., Colvin R. B. Fibronectin and fibrin provide a provisional matrix for epidermal cell migration during wound reepithelialization. J Invest Dermatol. 1982 Nov;79(5):264–269. doi: 10.1111/1523-1747.ep12500075. [DOI] [PubMed] [Google Scholar]
  8. Dobbs L. G., Geppert E. F., Williams M. C., Greenleaf R. D., Mason R. J. Metabolic properties and ultrastructure of alveolar type II cells isolated with elastase. Biochim Biophys Acta. 1980 Jun 23;618(3):510–523. doi: 10.1016/0005-2760(80)90270-2. [DOI] [PubMed] [Google Scholar]
  9. Dobbs L. G., Mason R. J. Pulmonary alveolar type II cells isolated from rats. Release of phosphatidylcholine in response to beta-adrenergic stimulation. J Clin Invest. 1979 Mar;63(3):378–387. doi: 10.1172/JCI109313. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Dobbs L. G., Mason R. J., Williams M. C., Benson B. J., Sueishi K. Secretion of surfactant by primary cultures of alveolar type II cells isolated from rats. Biochim Biophys Acta. 1982 Oct 14;713(1):118–127. doi: 10.1016/0005-2760(82)90174-6. [DOI] [PubMed] [Google Scholar]
  11. Engvall E., Ruoslahti E. Binding of soluble form of fibroblast surface protein, fibronectin, to collagen. Int J Cancer. 1977 Jul 15;20(1):1–5. doi: 10.1002/ijc.2910200102. [DOI] [PubMed] [Google Scholar]
  12. Evans M. J., Cabral L. J., Stephens R. J., Freeman G. Renewal of alveolar epithelium in the rat following exposure to NO2. Am J Pathol. 1973 Feb;70(2):175–198. [PMC free article] [PubMed] [Google Scholar]
  13. Evans M. J., Cabral L. J., Stephens R. J., Freeman G. Transformation of alveolar type 2 cells to type 1 cells following exposure to NO2. Exp Mol Pathol. 1975 Feb;22(1):142–150. doi: 10.1016/0014-4800(75)90059-3. [DOI] [PubMed] [Google Scholar]
  14. Federgreen W., Stenn K. S. Fibronectin (LETS) does not support epithelial cell spreading. J Invest Dermatol. 1980 Sep;75(3):261–263. doi: 10.1111/1523-1747.ep12523292. [DOI] [PubMed] [Google Scholar]
  15. Fujikawa L. S., Foster C. S., Harrist T. J., Lanigan J. M., Colvin R. B. Fibronectin in healing rabbit corneal wounds. Lab Invest. 1981 Aug;45(2):120–129. [PubMed] [Google Scholar]
  16. Furie M. B., Rifkin D. B. Proteolytically derived fragments of human plasma fibronectin and their localization within the intact molecule. J Biol Chem. 1980 Apr 10;255(7):3134–3140. [PubMed] [Google Scholar]
  17. Gilchrest B. A., Calhoun J. K., Maciag T. Attachment and growth of human keratinocytes in a serum-free environment. J Cell Physiol. 1982 Aug;112(2):197–206. doi: 10.1002/jcp.1041120207. [DOI] [PubMed] [Google Scholar]
  18. Grinnell F., Feld M. K. Adsorption characteristics of plasma fibronectin in relationship to biological activity. J Biomed Mater Res. 1981 May;15(3):363–381. doi: 10.1002/jbm.820150308. [DOI] [PubMed] [Google Scholar]
  19. Grinnell F., Feld M. K. Initial adhesion of human fibroblasts in serum-free medium: possible role of secreted fibronectin. Cell. 1979 May;17(1):117–129. doi: 10.1016/0092-8674(79)90300-3. [DOI] [PubMed] [Google Scholar]
  20. Grinnell F., Minter D. Attachment and spreading of baby hamster kidney cells to collagen substrata: effects of cold-insoluble globulin. Proc Natl Acad Sci U S A. 1978 Sep;75(9):4408–4412. doi: 10.1073/pnas.75.9.4408. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Hök M., Rubin K., Oldberg A., Obrink B., Vaheri A. Cold-insoluble globulin mediates the adhesion of rat liver cells to plastic Petri dishes. Biochem Biophys Res Commun. 1977 Dec 7;79(3):726–733. doi: 10.1016/0006-291x(77)91172-x. [DOI] [PubMed] [Google Scholar]
  22. Johansson S., Hök M. Substrate adhesion of rat hepatocytes: on the mechanism of attachment to fibronectin. J Cell Biol. 1984 Mar;98(3):810–817. doi: 10.1083/jcb.98.3.810. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Kikkawa Y., Yoneda K. The type II epithelial cell of the lung. I. Method of isolation. Lab Invest. 1974 Jan;30(1):76–84. [PubMed] [Google Scholar]
  24. Laurie G. W., Leblond C. P., Martin G. R. Localization of type IV collagen, laminin, heparan sulfate proteoglycan, and fibronectin to the basal lamina of basement membranes. J Cell Biol. 1982 Oct;95(1):340–344. doi: 10.1083/jcb.95.1.340. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. Leslie C. C., McCormick-Shannon K., Robinson P. C., Mason R. J. Stimulation of DNA synthesis in cultured rat alveolar type II cells. Exp Lung Res. 1985;8(1):53–66. doi: 10.3109/01902148509069679. [DOI] [PubMed] [Google Scholar]
  26. Mason R. J., Dobbs L. G. Synthesis of phosphatidylcholine and phosphatidylglycerol by alveolar type II cells in primary culture. J Biol Chem. 1980 Jun 10;255(11):5101–5107. [PubMed] [Google Scholar]
  27. McCarthy J. B., Hagen S. T., Furcht L. T. Human fibronectin contains distinct adhesion- and motility-promoting domains for metastatic melanoma cells. J Cell Biol. 1986 Jan;102(1):179–188. doi: 10.1083/jcb.102.1.179. [DOI] [PMC free article] [PubMed] [Google Scholar]
  28. McDonald J. A., Kelley D. G. Specific binding of fibronectin--antifibronectin immune complexes to procollagen: a new pitfall in immunostaining. J Cell Biol. 1984 Mar;98(3):1042–1047. doi: 10.1083/jcb.98.3.1042. [DOI] [PMC free article] [PubMed] [Google Scholar]
  29. Murray J. C., Stingl G., Kleinman H. K., Martin G. R., Katz S. I. Epidermal cells adhere preferentially to type IV (basement membrane) collagen. J Cell Biol. 1979 Jan;80(1):197–202. doi: 10.1083/jcb.80.1.197. [DOI] [PMC free article] [PubMed] [Google Scholar]
  30. O'Keefe E. J., Payne R. E., Jr, Russell N., Woodley D. T. Spreading and enhanced motility of human keratinocytes on fibronectin. J Invest Dermatol. 1985 Aug;85(2):125–130. doi: 10.1111/1523-1747.ep12276531. [DOI] [PubMed] [Google Scholar]
  31. Pierschbacher M. D., Hayman E. G., Ruoslahti E. Location of the cell-attachment site in fibronectin with monoclonal antibodies and proteolytic fragments of the molecule. Cell. 1981 Oct;26(2 Pt 2):259–267. doi: 10.1016/0092-8674(81)90308-1. [DOI] [PubMed] [Google Scholar]
  32. Pierschbacher M. D., Ruoslahti E., Sundelin J., Lind P., Peterson P. A. The cell attachment domain of fibronectin. Determination of the primary structure. J Biol Chem. 1982 Aug 25;257(16):9593–9597. [PubMed] [Google Scholar]
  33. Rauvala H., Carter W. G., Hakomori S. I. Studies on cell adhesion and recognition. I. Extent and specificity of cell adhesion triggered by carbohydrate-reactive proteins (glycosidases and lectins) and by fibronectin. J Cell Biol. 1981 Jan;88(1):127–137. doi: 10.1083/jcb.88.1.127. [DOI] [PMC free article] [PubMed] [Google Scholar]
  34. Rennard S. I., Berg R., Martin G. R., Foidart J. M., Robey P. G. Enzyme-linked immunoassay (ELISA) for connective tissue components. Anal Biochem. 1980 May 1;104(1):205–214. doi: 10.1016/0003-2697(80)90300-0. [DOI] [PubMed] [Google Scholar]
  35. Repesh L. A., Fitzgerald T. J., Furcht L. T. Changes in the distribution of fibronectin during limb regeneration in newts using immunocytochemistry. Differentiation. 1982;22(2):125–131. doi: 10.1111/j.1432-0436.1982.tb01236.x. [DOI] [PubMed] [Google Scholar]
  36. Repesh L. A., Fitzgerald T. J., Furcht L. T. Fibronectin involvement in granulation tissue and wound healing in rabbits. J Histochem Cytochem. 1982 Apr;30(4):351–358. doi: 10.1177/30.4.6174568. [DOI] [PubMed] [Google Scholar]
  37. Stenn K. S., Madri J. A., Tinghitella T., Terranova V. P. Multiple mechanisms of dissociated epidermal cell spreading. J Cell Biol. 1983 Jan;96(1):63–67. doi: 10.1083/jcb.96.1.63. [DOI] [PMC free article] [PubMed] [Google Scholar]
  38. Sun T. T., Green H. Keratin filaments of cultured human epidermal cells. Formation of intermolecular disulfide bonds during terminal differentiation. J Biol Chem. 1978 Mar 25;253(6):2053–2060. [PubMed] [Google Scholar]
  39. Sun T. T., Shih C., Green H. Keratin cytoskeletons in epithelial cells of internal organs. Proc Natl Acad Sci U S A. 1979 Jun;76(6):2813–2817. doi: 10.1073/pnas.76.6.2813. [DOI] [PMC free article] [PubMed] [Google Scholar]
  40. Takashima A., Grinnell F. Human keratinocyte adhesion and phagocytosis promoted by fibronectin. J Invest Dermatol. 1984 Nov;83(5):352–358. doi: 10.1111/1523-1747.ep12264522. [DOI] [PubMed] [Google Scholar]
  41. Terranova V. P., Rohrbach D. H., Martin G. R. Role of laminin in the attachment of PAM 212 (epithelial) cells to basement membrane collagen. Cell. 1980 Dec;22(3):719–726. doi: 10.1016/0092-8674(80)90548-6. [DOI] [PubMed] [Google Scholar]
  42. Timpl R., Martin G. R., Bruckner P., Wick G., Wiedemann H. Nature of the collagenous protein in a tumor basement membrane. Eur J Biochem. 1978 Mar;84(1):43–52. doi: 10.1111/j.1432-1033.1978.tb12139.x. [DOI] [PubMed] [Google Scholar]
  43. Timpl R., Rohde H., Robey P. G., Rennard S. I., Foidart J. M., Martin G. R. Laminin--a glycoprotein from basement membranes. J Biol Chem. 1979 Oct 10;254(19):9933–9937. [PubMed] [Google Scholar]
  44. Torikata C., Villiger B., Kuhn C., 3rd, McDonald J. A. Ultrastructural distribution of fibronectin in normal and fibrotic human lung. Lab Invest. 1985 Apr;52(4):399–408. [PubMed] [Google Scholar]

Articles from Journal of Clinical Investigation are provided here courtesy of American Society for Clinical Investigation

RESOURCES