Skip to main content
The Journal of Clinical Investigation logoLink to The Journal of Clinical Investigation
. 1986 Jun;77(6):1864–1872. doi: 10.1172/JCI112513

Abnormal metabolism of shellfish sterols in a patient with sitosterolemia and xanthomatosis.

R E Gregg, W E Connor, D S Lin, H B Brewer Jr
PMCID: PMC370545  PMID: 3711338

Abstract

Sitosterolemia and xanthomatosis together are a disease characterized by premature cardiovascular disease, and by elevated plasma concentrations of total sterols and of plant sterols, especially sitosterol which is hyperabsorbed. In order to determine whether this abnormal metabolism also involved other sterols, a patient with sitosterolemia was fed a diet high in shellfish that contain significant quantities of noncholesterol sterols, some of which are less well absorbed than cholesterol in humans. Compared with control subjects (n = 8), the sitosterolemic subject had an increased absorption of 22-dehydrocholesterol (71.5% vs. 43.8 +/- 11.4%, mean +/- SD), C-26 sterol (80.6% vs. 49.3 +/- 11.4%), brassicasterol (51.8% vs. 4.8 +/- 4.2%), and 24-methylene cholesterol (60.5% vs. 16.0 +/- 8.3%). This enhanced absorption was associated with an increased plasma total shellfish sterol level (13.1 mg/dl vs. 1.9 +/- 0.7 mg/dl in normals). In the sitosterolemic subject, as in normals, the shellfish sterols were not preferentially concentrated in any lipoprotein class, and 50-65% of these sterols were in the esterified form in plasma. Bile acids and neutral sterols were quantitated in bile obtained by duodenal aspiration. The bile acid composition did not differ significantly in the sitosterolemic subject compared with the normal controls. The sitosterolemic subject, though, was unable to concentrate normally the neutral shellfish sterols in bile. The normal controls concentrated the shellfish sterols in bile 6.3 +/- 1.7-fold relative to the plasma shellfish sterol concentration whereas the study subject was only able to concentrate them 2.1-fold. We propose that sitosterolemia and xanthomatosis occur from a generalized abnormality in the usual ability of the gut mucosa and other tissues of the body to discriminate among many different sterols. This has important implications for the understanding of the pathophysiology of this disease and for therapeutic recommendations.

Full text

PDF
1864

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Bhattacharyya A. K., Connor W. E. Beta-sitosterolemia and xanthomatosis. A newly described lipid storage disease in two sisters. J Clin Invest. 1974 Apr;53(4):1033–1043. doi: 10.1172/JCI107640. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Clark S. B., Tercyak A. M. Reduced cholesterol transmucosal transport in rats with inhibited mucosal acyl CoA:cholesterol acyltransferase and normal pancreatic function. J Lipid Res. 1984 Feb;25(2):148–159. [PubMed] [Google Scholar]
  3. Connor W. E., Lin D. S. Absorption and transport of shellfish sterols in human subjects. Gastroenterology. 1981 Aug;81(2):276–284. [PubMed] [Google Scholar]
  4. Connor W. E., Lin D. S. Placental transfer of cholesterol-4-14C into rabbit and guinea pig fetus. J Lipid Res. 1967 Nov;8(6):558–564. [PubMed] [Google Scholar]
  5. Connor W. E., Lin D. S. The effect of shellfish in the diet upon the plasma lipid levels in humans. Metabolism. 1982 Oct;31(10):1046–1051. doi: 10.1016/0026-0495(82)90150-0. [DOI] [PubMed] [Google Scholar]
  6. Connor W. E., Witiak D. T., Stone D. B., Armstrong M. L. Cholesterol balance and fecal neutral steroid and bile acid excretion in normal men fed dietary fats of different fatty acid composition. J Clin Invest. 1969 Aug;48(8):1363–1375. doi: 10.1172/JCI106102. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Dempsey M. E., McCoy K. E., Baker H. N., Dimitriadou-Vafiadou A., Lorsbach T., Howard J. B. Large scale purification and structural characterization of squalene and sterol carrier protein. J Biol Chem. 1981 Feb 25;256(4):1867–1873. [PubMed] [Google Scholar]
  8. FOLCH J., LEES M., SLOANE STANLEY G. H. A simple method for the isolation and purification of total lipides from animal tissues. J Biol Chem. 1957 May;226(1):497–509. [PubMed] [Google Scholar]
  9. Gallo L. L., Newbill T., Hyun J., Vahouny G. V., Treadwell C. R. Role of pancreatic cholesterol esterase in the uptake and esterification of cholesterol by isolated intestinal cells. Proc Soc Exp Biol Med. 1977 Nov;156(2):277–281. doi: 10.3181/00379727-156-39921. [DOI] [PubMed] [Google Scholar]
  10. Glomset J. A. High-density lipoproteins in human health and disease. Adv Intern Med. 1980;25:91–116. [PubMed] [Google Scholar]
  11. Grundy S. M., Metzger A. L. A physiological method for estimation of hepatic secretion of biliary lipids in man. Gastroenterology. 1972 Jun;62(6):1200–1217. [PubMed] [Google Scholar]
  12. HAVEL R. J., EDER H. A., BRAGDON J. H. The distribution and chemical composition of ultracentrifugally separated lipoproteins in human serum. J Clin Invest. 1955 Sep;34(9):1345–1353. doi: 10.1172/JCI103182. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Heider J. G., Pickens C. E., Kelly L. A. Role of acyl CoA:cholesterol acyltransferase in cholesterol absorption and its inhibition by 57-118 in the rabbit. J Lipid Res. 1983 Sep;24(9):1127–1134. [PubMed] [Google Scholar]
  14. Ilias A. M., Connor W. E., Cory H. T., Lin D. S., Daves G. D., Jr, Krippaehne W. W. Sterols of human gallstones: the recent identification of eight different digitonin precipitable sterols. Gastroenterology. 1980 Sep;79(3):539–544. [PubMed] [Google Scholar]
  15. Kwiterovich P. O., Jr, Bachorik P. S., Smith H. H., McKusick V. A., Connor W. E., Teng B., Sniderman A. D. Hyperapobetalipoproteinaemia in two families with xanthomas and phytosterolaemia. Lancet. 1981 Feb 28;1(8218):466–469. doi: 10.1016/s0140-6736(81)91850-x. [DOI] [PubMed] [Google Scholar]
  16. Lin D. S., Connor W. E., Napton L. K., Heizer R. F. The steroids of 2000-year-old human coprolites. J Lipid Res. 1978 Feb;19(2):215–221. [PubMed] [Google Scholar]
  17. Lin D. S., Connor W. E., Phillipson B. E. Sterol composition of normal human bile. Effects of feeding shellfish (marine) sterols. Gastroenterology. 1984 Apr;86(4):611–617. [PubMed] [Google Scholar]
  18. Lin H. J., Wang C., Salen G., Lam K. C., Chan T. K. Sitosterol and cholesterol metabolism in a patient with coexisting phytosterolemia and cholestanolemia. Metabolism. 1983 Feb;32(2):126–133. doi: 10.1016/0026-0495(83)90216-0. [DOI] [PubMed] [Google Scholar]
  19. Miettinen T. A. Phytosterolaemia, xanthomatosis and premature atherosclerotic arterial disease: a case with high plant sterol absorption, impaired sterol elimination and low cholesterol synthesis. Eur J Clin Invest. 1980 Feb;10(1):27–35. doi: 10.1111/j.1365-2362.1980.tb00006.x. [DOI] [PubMed] [Google Scholar]
  20. Noland B. J., Arebalo R. E., Hansbury E., Scallen T. J. Purification and properties of sterol carrier protein2. J Biol Chem. 1980 May 10;255(9):4282–4289. [PubMed] [Google Scholar]
  21. Nordby H. E., Nagy S. An evaluation of recent gas-liquid chromatographic liquid phases for resolution of acetylated plant sterols. J Chromatogr. 1973 Jan 17;75(2):187–193. doi: 10.1016/s0021-9673(00)85547-8. [DOI] [PubMed] [Google Scholar]
  22. Norum K. R., Lilljeqvist A. C., Helgerud P., Normann E. R., Mo A., Selbekk B. Esterification of cholesterol in human small intestine: the importance of acyl-CoA:cholesterol acyltransferase. Eur J Clin Invest. 1979 Feb;9(1):55–62. doi: 10.1111/j.1365-2362.1979.tb01667.x. [DOI] [PubMed] [Google Scholar]
  23. Rapp J. H., Connor W. E., Lin D. S., Inahara T., Porter J. M. Lipids of human atherosclerotic plaques and xanthomas: clues to the mechanism of plaque progression. J Lipid Res. 1983 Oct;24(10):1329–1335. [PubMed] [Google Scholar]
  24. Salen G., Ahrens E. H., Jr, Grundy S. M. Metabolism of beta-sitosterol in man. J Clin Invest. 1970 May;49(5):952–967. doi: 10.1172/JCI106315. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. Salen G., Kwiterovich P. O., Jr, Shefer S., Tint G. S., Horak I., Shore V., Dayal B., Horak E. Increased plasma cholestanol and 5 alpha-saturated plant sterol derivatives in subjects with sitosterolemia and xanthomatosis. J Lipid Res. 1985 Feb;26(2):203–209. [PubMed] [Google Scholar]
  26. Sedaghat A., Samuel P., Crouse J. R., Ahrens E. H., Jr Effects of neomycin on absorption, synthesis, and/or flux of cholesterol in man. J Clin Invest. 1975 Jan;55(1):12–21. doi: 10.1172/JCI107902. [DOI] [PMC free article] [PubMed] [Google Scholar]
  27. Shulman R. S., Bhattacharyya A. K., Connor W. E., Fredrickson D. S. Beta-sitosterolemia and xanthomatosis. N Engl J Med. 1976 Feb 26;294(9):482–483. doi: 10.1056/NEJM197602262940907. [DOI] [PubMed] [Google Scholar]
  28. Tavani D. M., Nes W. R., Billheimer J. T. The sterol substrate specificity of acyl CoA: :cholesterol acyltransferase from rat liver. J Lipid Res. 1982 Jul;23(5):774–781. [PubMed] [Google Scholar]
  29. Turley S. D., Dietschy J. M. The contribution of newly synthesized cholesterol to biliary cholesterol in the rat. J Biol Chem. 1981 Mar 10;256(5):2438–2446. [PubMed] [Google Scholar]
  30. Warnick G. R., Benderson J., Albers J. J. Dextran sulfate-Mg2+ precipitation procedure for quantitation of high-density-lipoprotein cholesterol. Clin Chem. 1982 Jun;28(6):1379–1388. [PubMed] [Google Scholar]

Articles from Journal of Clinical Investigation are provided here courtesy of American Society for Clinical Investigation

RESOURCES