Abstract
Two daughters of a propositus with documented McArdle's disease were shown by enzyme assay, gel electrophoresis, and immunoblotting to be partially deficient in skeletal muscle phosphorylase and, presumably, heterozygous for the trait. Both exhibited only the adult form of the skeletal muscle isozyme. By 31P-nuclear magnetic resonance, both heterozygotes showed a greater production of acid during fully aerobic exercise than when blood flow was occluded in ischemic exercise. This pattern is in contrast to that of control subjects, where there is significantly greater acid production in ischemic versus aerobic exercise, and distinct from that of phosphorylase-negative patients in which no acid is produced in either circumstance. We suggest that these heterozygotes may have adapted to their diminished phosphorylase by enhancing utilization of plasma glucose. If so, this mechanism could account for the observation that most of the symptoms of McArdle's disease are often manifest only in adulthood. These studies also show that although there are very high concentrations of phosphorylase in skeletal muscle (approximately 2% of the soluble protein), such a high level is essential for normal muscle glycogenolysis.
Full text
PDF






Images in this article
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Ahlborg G., Felig P. Lactate and glucose exchange across the forearm, legs, and splanchnic bed during and after prolonged leg exercise. J Clin Invest. 1982 Jan;69(1):45–54. doi: 10.1172/JCI110440. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Bradford M. M. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem. 1976 May 7;72:248–254. doi: 10.1016/0003-2697(76)90527-3. [DOI] [PubMed] [Google Scholar]
- Chui L. A., Munsat T. L. Dominant inheritance of McArdle syndrome. Arch Neurol. 1976 Sep;33(9):636–641. doi: 10.1001/archneur.1976.00500090042008. [DOI] [PubMed] [Google Scholar]
- Cochrane P., Hughes R. R., Buxton P. H., Yorke R. A. Myophosphorylase deficiency (McArdle's disease) in two interrelated families. J Neurol Neurosurg Psychiatry. 1973 Apr;36(2):217–224. doi: 10.1136/jnnp.36.2.217. [DOI] [PMC free article] [PubMed] [Google Scholar]
- DAVIS B. J. DISC ELECTROPHORESIS. II. METHOD AND APPLICATION TO HUMAN SERUM PROTEINS. Ann N Y Acad Sci. 1964 Dec 28;121:404–427. doi: 10.1111/j.1749-6632.1964.tb14213.x. [DOI] [PubMed] [Google Scholar]
- Dawson D. M., Spong F. L., Harrington J. F. McArdle's disease: lack of muscle phosphorylase. Ann Intern Med. 1968 Aug;69(2):229–235. doi: 10.7326/0003-4819-69-2-229. [DOI] [PubMed] [Google Scholar]
- Defronzo R. A. Glucose intolerance and aging: evidence for tissue insensitivity to insulin. Diabetes. 1979 Dec;28(12):1095–1101. doi: 10.2337/diab.28.12.1095. [DOI] [PubMed] [Google Scholar]
- DiMauro S., Arnold S., Miranda A., Rowland L. P. McArdle disease: the mystery of reappearing phosphorylase activity in muscle culture--a fetal isoenzyme. Ann Neurol. 1978 Jan;3(1):60–66. doi: 10.1002/ana.410030109. [DOI] [PubMed] [Google Scholar]
- DiMauro S., Hartlage P. L. Fatal infantile form of muscle phosphorylase deficiency. Neurology. 1978 Nov;28(11):1124–1129. doi: 10.1212/wnl.28.11.1124. [DOI] [PubMed] [Google Scholar]
- Dreyfus J. C., Proux D., Alexandre Y. Molecular studies on glycogen storage diseases. Enzyme. 1974;18(1):60–72. doi: 10.1159/000459414. [DOI] [PubMed] [Google Scholar]
- Feit H., Brooke M. H. Myophosphorylase deficiency: two different molecular etiologies. Neurology. 1976 Oct;26(10):963–967. doi: 10.1212/wnl.26.10.963. [DOI] [PubMed] [Google Scholar]
- Goodman M. N., Dluz S. M., McElaney M. A., Belur E., Ruderman N. B. Glucose uptake and insulin sensitivity in rat muscle: changes during 3-96 weeks of age. Am J Physiol. 1983 Jan;244(1):E93–100. doi: 10.1152/ajpendo.1983.244.1.E93. [DOI] [PubMed] [Google Scholar]
- Hoult D. I., Busby S. J., Gadian D. G., Radda G. K., Richards R. E., Seeley P. J. Observation of tissue metabolites using 31P nuclear magnetic resonance. Nature. 1974 Nov 22;252(5481):285–287. doi: 10.1038/252285a0. [DOI] [PubMed] [Google Scholar]
- Howe J. G., Hershey J. W. A sensitive immunoblotting method for measuring protein synthesis initiation factor levels in lysates of Escherichia coli. J Biol Chem. 1981 Dec 25;256(24):12836–12839. [PubMed] [Google Scholar]
- Jorfeldt L., Wahren J. Human forearm muscle metabolism during exercise. V. Quantitative aspects of glucose uptake and lactate production during prolonged exercise. Scand J Clin Lab Invest. 1970 Aug;26(1):73–81. doi: 10.3109/00365517009049217. [DOI] [PubMed] [Google Scholar]
- Kono N., Mineo I., Sumi S., Shimizu T., Kang J., Nonaka K., Tarui S. Metabolic basis of improved exercise tolerance: muscle phosphorylase deficiency after glucagon administration. Neurology. 1984 Nov;34(11):1471–1476. doi: 10.1212/wnl.34.11.1471. [DOI] [PubMed] [Google Scholar]
- Laemmli U. K. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature. 1970 Aug 15;227(5259):680–685. doi: 10.1038/227680a0. [DOI] [PubMed] [Google Scholar]
- Mineo I., Kono N., Shimizu T., Sumi S., Nonaka K., Tarui S. A comparative study on glucagon effect between McArdle disease and Tarui disease. Muscle Nerve. 1984 Sep;7(7):552–559. doi: 10.1002/mus.880070706. [DOI] [PubMed] [Google Scholar]
- Mommaerts W. F., Illingworth B., Pearson C. M., Guillory R. J., Seraydarian K. A FUNCTIONAL DISORDER OF MUSCLE ASSOCIATED WITH THE ABSENCE OF PHOSPHORYLASE. Proc Natl Acad Sci U S A. 1959 Jun;45(6):791–797. doi: 10.1073/pnas.45.6.791. [DOI] [PMC free article] [PubMed] [Google Scholar]
- PEARSON C. M., RIMER D. G., MOMMAERTS W. F. A metabolic myopathy due to absence of muscle phosphorylase. Am J Med. 1961 Apr;30:502–517. doi: 10.1016/0002-9343(61)90075-4. [DOI] [PubMed] [Google Scholar]
- Pernow B. B., Havel R. J., Jennings D. B. The second wind phenomenon in McArdle's syndrome. Acta Med Scand Suppl. 1967;472:294–307. doi: 10.1111/j.0954-6820.1967.tb12635.x. [DOI] [PubMed] [Google Scholar]
- Ramachandran C., Angelos K. L., Walsh D. A. Cyclic AMP-dependent and cyclic AMP-independent antagonism of insulin activation of cardiac glycogen synthase. J Biol Chem. 1982 Feb 10;257(3):1448–1457. [PubMed] [Google Scholar]
- Richter F., Böhme H. J., Hofmann E. Developmental changes of glycogen phosphorylase b isozymes in rat tissues. Biomed Biochim Acta. 1983;42(10):1229–1235. [PubMed] [Google Scholar]
- Ross B. D., Radda G. K., Gadian D. G., Rocker G., Esiri M., Falconer-Smith J. Examination of a case of suspected McArdle's syndrome by 31P nuclear magnetic resonance. N Engl J Med. 1981 May 28;304(22):1338–1342. doi: 10.1056/NEJM198105283042206. [DOI] [PubMed] [Google Scholar]
- SALMON S. E., TURNER C. E. MCARDLE'S DISEASE PRESENTING AS CONVULSION AND RHABDOMYOLYSIS. Am J Med. 1965 Jul;39:142–146. doi: 10.1016/0002-9343(65)90254-8. [DOI] [PubMed] [Google Scholar]
- SCHMID R., HAMMAKER L. Hereditary absence of muscle phosphorylase (McArdle's syndrome). N Engl J Med. 1961 Feb 2;264:223–225. doi: 10.1056/NEJM196102022640504. [DOI] [PubMed] [Google Scholar]
- SCHMID R., MAHLER R. Chronic progressive myopathy with myoglobinuria: demonstration of a glycogenolytic defect in the muscle. J Clin Invest. 1959 Nov;38:2044–2058. doi: 10.1172/JCI103983. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Sato K., Imai F., Hatayama I., Roelofs R. I. Characterization of glycogen phosphorylase isoenzymes present in cultured skeletal muscle from patients with McArdle's disease. Biochem Biophys Res Commun. 1977 Sep 23;78(2):663–668. doi: 10.1016/0006-291x(77)90230-3. [DOI] [PubMed] [Google Scholar]
- Sato K., Satoh K., Sato T., Imai F., Morris H. P. Isozyme patterns of glycogen phosphorylase in rat tissues and transplantable hepatomas. Cancer Res. 1976 Feb;36(2 Pt 1):487–495. [PubMed] [Google Scholar]
- Schmid R., Robbins P. W., Traut R. R. GLYCOGEN SYNTHESIS IN MUSCLE LACKING PHOSPHORYLASE. Proc Natl Acad Sci U S A. 1959 Aug;45(8):1236–1240. doi: 10.1073/pnas.45.8.1236. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Taylor D. J., Bore P. J., Styles P., Gadian D. G., Radda G. K. Bioenergetics of intact human muscle. A 31P nuclear magnetic resonance study. Mol Biol Med. 1983 Jul;1(1):77–94. [PubMed] [Google Scholar]
- Wheeler T. J., Lowenstein J. M. Adenylate deaminase from rat muscle. Regulation by purine nucleotides and orthophosphate in the presence of 150 mM KCl. J Biol Chem. 1979 Sep 25;254(18):8994–8999. [PubMed] [Google Scholar]



