Skip to main content
The Journal of Clinical Investigation logoLink to The Journal of Clinical Investigation
. 1986 Jun;77(6):1971–1984. doi: 10.1172/JCI112526

Uptake of low density lipoproteins by rat tissues. Special emphasis on the luteinized ovary.

E Reaven, Y D Chen, M Spicher, S F Hwang, C E Mondon, S Azhar
PMCID: PMC370558  PMID: 3711341

Abstract

The aim of this study was to determine how luteal cells of the hormone-primed (luteinized) ovary process low density lipoproteins (LDL). Ovary uptake of perfused 125I-LDL was assessed by tissue levels of radioactivity; the distribution of LDL protein in cells was assessed on autoradiograms of the fixed tissue; and the level of stimulation of steroidogenesis, as well as degradation of LDL protein, was assessed on effluent perfusion samples. Human LDL ligand used in these studies was rigorously defined biochemically and physiologically. Homologous (rat) LDL was used as a special ligand control. Other tissue controls included the use of perfused or in vivo-infused luteinized ovaries from animals pretreated to reduce circulating lipoprotein levels, perfused ovaries from a second hormone-primed model, perfused liver from estrogen-treated rats, and isolated and cultured cells from the same ovarian tissues used in the perfusion experiments. The results show that perfused LDL promptly stimulates steroidogenesis. However, the labeled protein moiety of the LDL is not interiorized by the luteal cells, nor is there evidence of LDL protein degradation in the effluent samples. In contrast, internalization of the ligand occurs when luteal cells are incubated with the ligand in vitro. We have observed also that uptake of the 125I-LDL by the ovary can be displaced equally well by excess unlabeled LDL or HDL3. Overall, these experiments suggest that in the intact luteinized ovary, LDL binds to the same sites on the cell surface where HDL "binds," and that LDL cholesterol must be obtained by these steroid hormone-producing cells by a mechanism that does not require internalization of the intact lipoprotein particle.

Full text

PDF
1971

Images in this article

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Anderson R. G., Brown M. S., Goldstein J. L. Role of the coated endocytic vesicle in the uptake of receptor-bound low density lipoprotein in human fibroblasts. Cell. 1977 Mar;10(3):351–364. doi: 10.1016/0092-8674(77)90022-8. [DOI] [PubMed] [Google Scholar]
  2. Azhar S., Menon K. M. Receptor-mediated gonadotropin action in the ovary. Rat luteal cells preferentially utilize and are acutely dependent upon the plasma lipoprotein-supplied sterols in gonadotropin-stimulated steroid production. J Biol Chem. 1981 Jul 10;256(13):6548–6555. [PubMed] [Google Scholar]
  3. Azhar S., Reaven E. Effect of antimicrotubule agents on microtubules and steroidogenesis in luteal cells. Am J Physiol. 1982 Nov;243(5):E380–E386. doi: 10.1152/ajpendo.1982.243.5.E380. [DOI] [PubMed] [Google Scholar]
  4. Barnwell S. G., Coleman R. Abnormal secretion of proteins into bile from colchicine-treated isolated perfused rat livers. Biochem J. 1983 Nov 15;216(2):409–414. doi: 10.1042/bj2160409. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Bilheimer D. W., Eisenberg S., Levy R. I. The metabolism of very low density lipoprotein proteins. I. Preliminary in vitro and in vivo observations. Biochim Biophys Acta. 1972 Feb 21;260(2):212–221. doi: 10.1016/0005-2760(72)90034-3. [DOI] [PubMed] [Google Scholar]
  6. Brown M. S., Kovanen P. T., Goldstein J. L. Receptor-mediated uptake of lipoprotein-cholesterol and its utilization for steroid synthesis in the adrenal cortex. Recent Prog Horm Res. 1979;35:215–257. doi: 10.1016/b978-0-12-571135-7.50009-6. [DOI] [PubMed] [Google Scholar]
  7. Campbell K. L. Ovarian granulosa cells isolated with EGTA and hypertonic sucrose: cellular integrity and function. Biol Reprod. 1979 Nov;21(4):773–786. doi: 10.1095/biolreprod21.4.773. [DOI] [PubMed] [Google Scholar]
  8. Carew T. E., Pittman R. C., Steinberg D. Tissue sites of degradation of native and reductively methylated [14C]sucrose-labeled low density lipoprotein in rats. Contribution of receptor-dependent and receptor-independent pathways. J Biol Chem. 1982 Jul 25;257(14):8001–8008. [PubMed] [Google Scholar]
  9. Chao Y. S., Jones A. L., Hradek G. T., Windler E. E., Havel R. J. Autoradiographic localization of the sites of uptake, cellular transport, and catabolism of low density lipoproteins in the liver of normal and estrogen-treated rats. Proc Natl Acad Sci U S A. 1981 Jan;78(1):597–601. doi: 10.1073/pnas.78.1.597. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Chapman M. J. Animal lipoproteins: chemistry, structure, and comparative aspects. J Lipid Res. 1980 Sep;21(7):789–853. [PubMed] [Google Scholar]
  11. Clark M. R. Stimulation of progesterone and prostaglandin E accumulation by luteinizing hormone-releasing hormone (LHRH) and LHRH analogs in rat granulosa cells. Endocrinology. 1982 Jan;110(1):146–152. doi: 10.1210/endo-110-1-146. [DOI] [PubMed] [Google Scholar]
  12. Fielding C. J., Vlodavsky I., Fielding P. E., Gospodarowicz D. Characteristics of chylomicron binding and lipid uptake by endothelial cells in culture. J Biol Chem. 1979 Sep 25;254(18):8861–8868. [PubMed] [Google Scholar]
  13. Fless G. M., Rolih C. A., Scanu A. M. Heterogeneity of human plasma lipoprotein (a). Isolation and characterization of the lipoprotein subspecies and their apoproteins. J Biol Chem. 1984 Sep 25;259(18):11470–11478. [PubMed] [Google Scholar]
  14. Fong B. S., Rodrigues P. O., Angel A. Characterization of low density lipoprotein binding to human adipocytes and adipocyte membranes. J Biol Chem. 1984 Aug 25;259(16):10168–10174. [PubMed] [Google Scholar]
  15. Goldstein J. L., Brown M. S. Binding and degradation of low density lipoproteins by cultured human fibroblasts. Comparison of cells from a normal subject and from a patient with homozygous familial hypercholesterolemia. J Biol Chem. 1974 Aug 25;249(16):5153–5162. [PubMed] [Google Scholar]
  16. Goldstein J. L., Brown M. S. The low-density lipoprotein pathway and its relation to atherosclerosis. Annu Rev Biochem. 1977;46:897–930. doi: 10.1146/annurev.bi.46.070177.004341. [DOI] [PubMed] [Google Scholar]
  17. Gwynne J. T., Strauss J. F., 3rd The role of lipoproteins in steroidogenesis and cholesterol metabolism in steroidogenic glands. Endocr Rev. 1982 Summer;3(3):299–329. doi: 10.1210/edrv-3-3-299. [DOI] [PubMed] [Google Scholar]
  18. Gwynne J. T., Strauss J. F., 3rd The role of lipoproteins in steroidogenesis and cholesterol metabolism in steroidogenic glands. Endocr Rev. 1982 Summer;3(3):299–329. doi: 10.1210/edrv-3-3-299. [DOI] [PubMed] [Google Scholar]
  19. HAVEL R. J., EDER H. A., BRAGDON J. H. The distribution and chemical composition of ultracentrifugally separated lipoproteins in human serum. J Clin Invest. 1955 Sep;34(9):1345–1353. doi: 10.1172/JCI103182. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Handley D. A., Arbeeny C. M., Eder H. A., Chien S. Hepatic binding and internalization of low density lipoprotein-gold conjugates in rats treated with 17 alpha-ethinylestradiol. J Cell Biol. 1981 Sep;90(3):778–787. doi: 10.1083/jcb.90.3.778. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Hsueh A. J., Wang C., Erickson G. F. Direct inhibitory effect of gonadotropin-releasing hormone upon follicle-stimulating hormone induction of luteinizing hormone receptor and aromatase activity in rat granulosa cells. Endocrinology. 1980 Jun;106(6):1697–1705. doi: 10.1210/endo-106-6-1697. [DOI] [PubMed] [Google Scholar]
  22. Hwang J., Menon K. M. Characterization of low density and high density lipoprotein receptors in the rat corpus luteum and regulation by gonadotropin. J Biol Chem. 1983 Jul 10;258(13):8020–8027. [PubMed] [Google Scholar]
  23. Innerarity T. L., Mahley R. W. Enhanced binding by cultured human fibroblasts of apo-E-containing lipoproteins as compared with low density lipoproteins. Biochemistry. 1978 Apr 18;17(8):1440–1447. doi: 10.1021/bi00601a013. [DOI] [PubMed] [Google Scholar]
  24. Innerarity T. L., Pitas R. E., Mahley R. W. Disparities in the interaction of rat and human lipoproteins with cultured rat fibroblasts and smooth muscle cells. Requirements for homology for receptor binding activity. J Biol Chem. 1980 Dec 10;255(23):11163–11172. [PubMed] [Google Scholar]
  25. Koelz H. R., Sherrill B. C., Turley S. D., Dietschy J. M. Correlation of low and high density lipoprotein binding in vivo with rates of lipoprotein degradation in the rat. A comparison of lipoproteins of rat and human origin. J Biol Chem. 1982 Jul 25;257(14):8061–8072. [PubMed] [Google Scholar]
  26. Kovanen P. T., Brown M. S., Goldstein J. L. Increased binding of low density lipoprotein to liver membranes from rats treated with 17 alpha-ethinyl estradiol. J Biol Chem. 1979 Nov 25;254(22):11367–11373. [PubMed] [Google Scholar]
  27. Kovanen P. T., Schneider W. J., Hillman G. M., Goldstein J. L., Brown M. S. Separate mechanisms for the uptake of high and low density lipoproteins by mouse adrenal gland in vivo. J Biol Chem. 1979 Jun 25;254(12):5498–5505. [PubMed] [Google Scholar]
  28. LOWRY O. H., ROSEBROUGH N. J., FARR A. L., RANDALL R. J. Protein measurement with the Folin phenol reagent. J Biol Chem. 1951 Nov;193(1):265–275. [PubMed] [Google Scholar]
  29. Leikin A. I., Mihovilovic M., Scanu A. M. High density lipoproteins influence cholesterol homeostasis in cultured virus-transformed human lymphoblastoid cells. Dependence on the lipoprotein concentration in the medium. J Biol Chem. 1982 Dec 10;257(23):14280–14287. [PubMed] [Google Scholar]
  30. Markwell M. A., Haas S. M., Tolbert N. E., Bieber L. L. Protein determination in membrane and lipoprotein samples: manual and automated procedures. Methods Enzymol. 1981;72:296–303. doi: 10.1016/s0076-6879(81)72018-4. [DOI] [PubMed] [Google Scholar]
  31. Paavola L. G., Strauss J. F., 3rd, Boyd C. O., Nestler J. E. Uptake of gold- and [3H]cholesteryl linoleate-labeled human low density lipoprotein by cultured rat granulosa cells: cellular mechanisms involved in lipoprotein metabolism and their importance to steroidogenesis. J Cell Biol. 1985 Apr;100(4):1235–1247. doi: 10.1083/jcb.100.4.1235. [DOI] [PMC free article] [PubMed] [Google Scholar]
  32. Paavola L. G., Strauss J. F., 3rd Uptake of lipoproteins by in situ perfused rat ovaries: identification of binding sites for high density lipoproteins. J Cell Biol. 1983 Sep;97(3):593–606. doi: 10.1083/jcb.97.3.593. [DOI] [PMC free article] [PubMed] [Google Scholar]
  33. Pittman R. C., Attie A. D., Carew T. E., Steinberg D. Tissue sites of catabolism of rat and human low density lipoproteins in rats. Biochim Biophys Acta. 1982 Jan 15;710(1):7–14. doi: 10.1016/0005-2760(82)90183-7. [DOI] [PubMed] [Google Scholar]
  34. Pittman R. C., Attie A. D., Carew T. E., Steinberg D. Tissue sites of degradation of low density lipoprotein: application of a method for determining the fate of plasma proteins. Proc Natl Acad Sci U S A. 1979 Oct;76(10):5345–5349. doi: 10.1073/pnas.76.10.5345. [DOI] [PMC free article] [PubMed] [Google Scholar]
  35. Pittman R. C., Green S. R., Attie A. D., Steinberg D. Radiolabeled sucrose covalently linked to protein. A device for quantifying degradation of plasma proteins catabolized by lysosomal mechanisms. J Biol Chem. 1979 Aug 10;254(15):6876–6879. [PubMed] [Google Scholar]
  36. Pittman R. C., Steinberg D. A new approach for assessing cumulative lysosomal degradation of proteins or other macromolecules. Biochem Biophys Res Commun. 1978 Apr 28;81(4):1254–1259. doi: 10.1016/0006-291x(78)91271-8. [DOI] [PubMed] [Google Scholar]
  37. Reaven E., Chen Y. D., Spicher M., Azhar S. Morphological evidence that high density lipoproteins are not internalized by steroid-producing cells during in situ organ perfusion. J Clin Invest. 1984 Oct;74(4):1384–1397. doi: 10.1172/JCI111549. [DOI] [PMC free article] [PubMed] [Google Scholar]
  38. Slot J. W., Geuze H. J. Sizing of protein A-colloidal gold probes for immunoelectron microscopy. J Cell Biol. 1981 Aug;90(2):533–536. doi: 10.1083/jcb.90.2.533. [DOI] [PMC free article] [PubMed] [Google Scholar]
  39. Tan C. H., Robinson J. The superovulated rat: its use as a model in studies on the acute steroidogenic effects of luteinizing hormone. Endocrinology. 1977 Aug;101(2):396–402. doi: 10.1210/endo-101-2-396. [DOI] [PubMed] [Google Scholar]
  40. Wilks J. W., Fuller G. B., Hansel W. The role of cholesterol as a progestin precursor in rat, rabbit, and bovine luteal tissue. Endocrinology. 1970 Sep;87(3):581–587. doi: 10.1210/endo-87-3-581. [DOI] [PubMed] [Google Scholar]
  41. Windler E. E., Kovanen P. T., Chao Y. S., Brown M. S., Havel R. J., Goldstein J. L. The estradiol-stimulated lipoprotein receptor of rat liver. A binding site that membrane mediates the uptake of rat lipoproteins containing apoproteins B and E. J Biol Chem. 1980 Nov 10;255(21):10464–10471. [PubMed] [Google Scholar]

Articles from Journal of Clinical Investigation are provided here courtesy of American Society for Clinical Investigation

RESOURCES