Skip to main content
The Journal of Clinical Investigation logoLink to The Journal of Clinical Investigation
. 1986 Jun;77(6):2010–2018. doi: 10.1172/JCI112530

Comparison of intravenous gamma globulin and a monoclonal anti-Fc receptor antibody as inhibitors of immune clearance in vivo in mice.

R J Kurlander, J Hall
PMCID: PMC370562  PMID: 2423561

Abstract

Fc-receptor-mediated clearance and nonspecific phagocytic clearance were assessed after the infusion of monomeric human IgG, heat-aggregated human IgG, and a monoclonal anti-mouse macrophage FcII receptor antibody (2.4G2) into normal mice. Each agent blocked Fc-receptor function in vivo, but 2.4G2 was much more potent per microgram than the other agents. Monomeric IgG in blocking doses did not affect other aspects of immune function. In contrast, aggregated IgG, and to a lesser extent, 2.4G2 reduced serum complement levels. In addition, these agents also caused moderate reductions in nonspecific phagocytic function. Monoclonal anti-mouse macrophage C3bi receptor antibody (Mac-1), another monoclonal antibody which binds to macrophage CR3 receptors without interfering with Fc-receptor function, also reduced serum complement and inhibited nonspecific phagocytic function. Complement depletion alone (produced by infusion of cobra venom factor) could not account for the observed changes in Fc receptor or nonspecific phagocytic function. We conclude that both monomeric IgG and anti-Fc-receptor antibodies can markedly inhibit Fc-receptor function in vivo; however, the pattern of physiologic changes produced by these agents differs.

Full text

PDF
2010

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Beller D. I., Springer T. A., Schreiber R. D. Anti-Mac-1 selectively inhibits the mouse and human type three complement receptor. J Exp Med. 1982 Oct 1;156(4):1000–1009. doi: 10.1084/jem.156.4.1000. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Bussel J. B., Kimberly R. P., Inman R. D., Schulman I., Cunningham-Rundles C., Cheung N., Smithwick E. M., O'Malley J., Barandun S., Hilgartner M. W. Intravenous gammaglobulin treatment of chronic idiopathic thrombocytopenic purpura. Blood. 1983 Aug;62(2):480–486. [PubMed] [Google Scholar]
  3. Bussel J., Lalezari P., Hilgartner M., Partin J., Fikrig S., O'Malley J., Barandun S. Reversal of neutropenia with intravenous gammaglobulin in autoimmune neutropenia of infancy. Blood. 1983 Aug;62(2):398–400. [PubMed] [Google Scholar]
  4. Dickler H. B., Kunkel H. G. Interaction of aggregated -globulin with B lymphocytes. J Exp Med. 1972 Jul 1;136(1):191–196. doi: 10.1084/jem.136.1.191. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Elkon K. B., Ferjencik P. P., Walport M. J., Peters A. M., Lewis S. M., Hughes G. R. Evaluation of heat-damaged and IgG-coated red cells for testing reticuloendothelial function. J Immunol Methods. 1982 Dec 17;55(2):253–263. doi: 10.1016/0022-1759(82)90037-0. [DOI] [PubMed] [Google Scholar]
  6. Ey P. L., Prowse S. J., Jenkin C. R. Isolation of pure IgG1, IgG2a and IgG2b immunoglobulins from mouse serum using protein A-sepharose. Immunochemistry. 1978 Jul;15(7):429–436. doi: 10.1016/0161-5890(78)90070-6. [DOI] [PubMed] [Google Scholar]
  7. Fehr J., Hofmann V., Kappeler U. Transient reversal of thrombocytopenia in idiopathic thrombocytopenic purpura by high-dose intravenous gamma globulin. N Engl J Med. 1982 May 27;306(21):1254–1258. doi: 10.1056/NEJM198205273062102. [DOI] [PubMed] [Google Scholar]
  8. Fleit H. B., Wright S. D., Unkeless J. C. Human neutrophil Fc gamma receptor distribution and structure. Proc Natl Acad Sci U S A. 1982 May;79(10):3275–3279. doi: 10.1073/pnas.79.10.3275. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Frank M. M., Lawley T. J., Hamburger M. I., Brown E. J. NIH Conference: Immunoglobulin G Fc receptor-mediated clearance in autoimmune diseases. Ann Intern Med. 1983 Feb;98(2):206–218. doi: 10.7326/0003-4819-98-2-218. [DOI] [PubMed] [Google Scholar]
  10. Friedrich E. A., Aulenbacher P., Schlepper-Schäfer J., Süss R. Kupffer cells recognize trinitrobenzene-labeled erythrocytes. Immunol Lett. 1982 Mar;4(3):167–170. doi: 10.1016/0165-2478(82)90030-x. [DOI] [PubMed] [Google Scholar]
  11. Haeffner-Cavaillon N., Dorrington K. J., Klein M. Studies on the Fc gamma receptor of the murine macrophage-like cell line P388D1. II. Binding of human IgG subclass proteins and their proteolytic fragments. J Immunol. 1979 Nov;123(5):1914–1919. [PubMed] [Google Scholar]
  12. Hauch T. W., Rosse W. F. Platelet-bound complement (C3) in immune thrombocytopenia. Blood. 1977 Dec;50(6):1129–1136. [PubMed] [Google Scholar]
  13. ISHIZAKA K., ISHIZAKA T., CAMPBELL D. H. The biological activity of soluble antigen-antibody complexes. II. Physical properties of soluble complexes having skin-irritating activity. J Exp Med. 1959 Feb 1;109(2):127–143. doi: 10.1084/jem.109.2.127. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Imbach P., Barandun S., d'Apuzzo V., Baumgartner C., Hirt A., Morell A., Rossi E., Schöni M., Vest M., Wagner H. P. High-dose intravenous gammaglobulin for idiopathic thrombocytopenic purpura in childhood. Lancet. 1981 Jun 6;1(8232):1228–1231. doi: 10.1016/s0140-6736(81)92400-4. [DOI] [PubMed] [Google Scholar]
  15. Imbach P., Jungi T. W. Possible mechanisms of intravenous immunoglobulin treatment in childhood idiopathic thrombocytopenic purpura (ITP). Blut. 1983 Mar;46(3):117–124. doi: 10.1007/BF00320269. [DOI] [PubMed] [Google Scholar]
  16. Kelton J. G., Singer J., Rodger C., Gauldie J., Horsewood P., Dent P. The concentration of IgG in the serum is a major determinant of Fc-dependent reticuloendothelial function. Blood. 1985 Sep;66(3):490–495. [PubMed] [Google Scholar]
  17. Kurlander R. J., Batker J. The binding of human immunoglobulin G1 monomer and small, covalently cross-linked polymers of immunoglobulin G1 to human peripheral blood monocytes and polymorphonuclear leukocytes. J Clin Invest. 1982 Jan;69(1):1–8. doi: 10.1172/JCI110419. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Kurlander R. J., Ellison D. M., Hall J. The blockade of Fc receptor-mediated clearance of immune complexes in vivo by a monoclonal antibody (2.4G2) directed against Fc receptors on murine leukocytes. J Immunol. 1984 Aug;133(2):855–862. [PubMed] [Google Scholar]
  19. Kurlander R. J. Reversible and irreversible loss of Fc receptor function of human monocytes as a consequence of interaction with immunoglobulin G. J Clin Invest. 1980 Oct;66(4):773–781. doi: 10.1172/JCI109915. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Kávai M., Sándor M., Szegedi G., Füst G., Gergely J. Effect of soluble immune complexes of Fc and C3 receptor-dependent phagocytosis by human monocytes. Immunology. 1981 Nov;44(3):599–606. [PMC free article] [PubMed] [Google Scholar]
  21. LOWRY O. H., ROSEBROUGH N. J., FARR A. L., RANDALL R. J. Protein measurement with the Folin phenol reagent. J Biol Chem. 1951 Nov;193(1):265–275. [PubMed] [Google Scholar]
  22. LoBuglio A. F., Cotran R. S., Jandl J. H. Red cells coated with immunoglobulin G: binding and sphering by mononuclear cells in man. Science. 1967 Dec 22;158(3808):1582–1585. doi: 10.1126/science.158.3808.1582. [DOI] [PubMed] [Google Scholar]
  23. Mannik M., Arend M. P., Hall A. P., Gilliland B. C. Studies on antigen-antibody complexes. I. Elimination of soluble complexes from rabbit circulation. J Exp Med. 1971 Apr 1;133(4):713–739. doi: 10.1084/jem.133.4.713. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Markwell M. A. A new solid-state reagent to iodinate proteins. I. Conditions for the efficient labeling of antiserum. Anal Biochem. 1982 Sep 15;125(2):427–432. doi: 10.1016/0003-2697(82)90025-2. [DOI] [PubMed] [Google Scholar]
  25. NIH conference. Pathophysiology of immune hemolytic anemia. Ann Intern Med. 1977 Aug;87(2):210–222. doi: 10.7326/0003-4819-87-2-210. [DOI] [PubMed] [Google Scholar]
  26. Newland A. C., Treleaven J. G., Minchinton R. M., Waters A. H. High-dose intravenous IgG in adults with autoimmune thrombocytopenia. Lancet. 1983 Jan 15;1(8316):84–87. doi: 10.1016/s0140-6736(83)91738-5. [DOI] [PubMed] [Google Scholar]
  27. Pepys M. B. Role of complement in induction of the allergic response. Nat New Biol. 1972 May 31;237(74):157–159. doi: 10.1038/newbio237157a0. [DOI] [PubMed] [Google Scholar]
  28. Perussia B., Trinchieri G. Antibody 3G8, specific for the human neutrophil Fc receptor, reacts with natural killer cells. J Immunol. 1984 Mar;132(3):1410–1415. [PubMed] [Google Scholar]
  29. Rittenberg M. B., Pratt K. L. Antitrinitrophenyl (TNP) plaque assay. Primary response of Balb/c mice to soluble and particulate immunogen. Proc Soc Exp Biol Med. 1969 Nov;132(2):575–581. doi: 10.3181/00379727-132-34264. [DOI] [PubMed] [Google Scholar]
  30. Saba T. M., Jaffe E. Plasma fibronectin (opsonic glycoprotein): its synthesis by vascular endothelial cells and role in cardiopulmonary integrity after trauma as related to reticuloendothelial function. Am J Med. 1980 Apr;68(4):577–594. doi: 10.1016/0002-9343(80)90310-1. [DOI] [PubMed] [Google Scholar]
  31. Segal D. M., Dower S. K., Titus J. A. The role of non-immune IgG in controlling IgG-mediated effector functions. Mol Immunol. 1983 Nov;20(11):1177–1189. doi: 10.1016/0161-5890(83)90141-4. [DOI] [PubMed] [Google Scholar]
  32. Segal D. M., Hurwitz E. Binding of affinity cross-linked oligomers of IgG to cells bearing Fc receptors. J Immunol. 1977 Apr;118(4):1338–1337. [PubMed] [Google Scholar]
  33. Springer T., Galfré G., Secher D. S., Milstein C. Mac-1: a macrophage differentiation antigen identified by monoclonal antibody. Eur J Immunol. 1979 Apr;9(4):301–306. doi: 10.1002/eji.1830090410. [DOI] [PubMed] [Google Scholar]
  34. Unkeless J. C. Characterization of a monoclonal antibody directed against mouse macrophage and lymphocyte Fc receptors. J Exp Med. 1979 Sep 19;150(3):580–596. doi: 10.1084/jem.150.3.580. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Journal of Clinical Investigation are provided here courtesy of American Society for Clinical Investigation

RESOURCES