Skip to main content
The Journal of Clinical Investigation logoLink to The Journal of Clinical Investigation
. 1981 Feb;67(2):395–402. doi: 10.1172/JCI110047

Evidence for central hypertyraminemia in hepatic encephalopathy.

B A Faraj, V M Camp, J D Ansley, J Scott, F M Ali, E J Malveaux
PMCID: PMC370580  PMID: 7462424

Abstract

In mongrel dogs, the effect of end-to-side portacaval shunt on plasma, cerebrospinal fluid (CSF) and brain tyramine, tyrosine, dopamine, norepinephrine, and epinephrine were studied. It was found that the level of tyramine in plasma, CSF, and selected brain regions increased steadily after the construction of the shunts. These elevations became more pronounced when the dogs manifested symptoms of hepatic encephalopathy. In postshunted dogs with stage II and III hepatic encephalopathy, tyramine concentration in corpus striatum (1,312 +/- 371), hypothalamus (400 +/- 67.0), and midbrain (660 +/- 78.7 ng/g) was significantly (P less than 0.05) higher than the level in dogs with stage 0 and I hepatic encephalopathy and sham-operated dogs serving as controls (corpus striatum, 831 +/- 140; hypothalamus, 167 +/- 40.0; and midbrain, 132 +/- 37.4 ng/g). This was followed by a concomitant depletion of dopamine and norepinephrine in these brain regions (postshunt: dopamine 104 +/- 20.0, 3,697 +/- 977, and 105 +/- 14.1; norepinephrine 521 +/- 71.6, 81.6 +/- 13.7, and 218 +/- 31.7 ng/g; vs. sham group: dopamine 532 +/- 83.1, 8,210 +/- 1,126, and 192 +/- 35.0; norepinephrine 1,338 +/- 425, 124 +/- 21.3, and 449 +/- 89.7 ng/g) of encephalopathic dogs with portacaval shunt. Furthermore, tyramine, tyrosine, dopamine, and norepinephrine levels in plasma and CSF increased markedly as clinical features in the dogs' behavior characteristic of hepatic encephalopathy occurred, including hypersalivation, ataxia, flapping tremor, somnolence, and coma. Cerebral hypertyraminemia and a defect in sympathetic neurotransmission may contribute to the development of hepatic encephalopathy of liver disease.

Full text

PDF
395

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Axelrod J., Weinshilboum R. Catecholamines. N Engl J Med. 1972 Aug 3;287(5):237–242. doi: 10.1056/NEJM197208032870508. [DOI] [PubMed] [Google Scholar]
  2. Benson J. V., Jr, Patterson J. A. Accelerated chromatographic analysis of amino acids commonly found in physiological fluids on a spherical resin of specific design. Anal Biochem. 1965 Nov;13(2):265–280. doi: 10.1016/0003-2697(65)90196-x. [DOI] [PubMed] [Google Scholar]
  3. Bhansali K. G., Lach J. L., Clifton J. A. MAO activity in normal, cirrhotic, and noncirrhotic abnormal human liver. J Pharm Sci. 1971 Apr;60(4):611–613. doi: 10.1002/jps.2600600424. [DOI] [PubMed] [Google Scholar]
  4. Bjur R. A., Weiner N. The activity of tyrosine hydroxylase in intact adrenergic neurons of the mouse vas deferens. J Pharmacol Exp Ther. 1975 Jul;194(1):9–26. [PubMed] [Google Scholar]
  5. Bloch P., Delorme M. L., Rapin J. R., Granger A., Boschat M., Opolon P. Reversible modifications of neurotransmitters of the brain in experimental acute hepatic coma. Surg Gynecol Obstet. 1978 Apr;146(4):551–558. [PubMed] [Google Scholar]
  6. Cheung C. Y., Weiner R. I. In vitro supersensitivity of the anterior pituitary to dopamine inhibition of prolactin secretion. Endocrinology. 1978 May;102(5):1614–1620. doi: 10.1210/endo-102-5-1614. [DOI] [PubMed] [Google Scholar]
  7. Cheung M. C., Slaunwhite W. R., Jr Use of polyethylene glycol in separating bound from unbound ligand in radioimmunoassay of thyroxine. Clin Chem. 1976 Mar;22(3):299–304. [PubMed] [Google Scholar]
  8. Faraj B. A., Ali F. M., Ansley J. D., Malveaux E. J. Decarboxylation to tyramine: an important route of tyrosine metabolism in dogs with experimental hepatic encephalopathy. Gastroenterology. 1978 Dec;75(6):1041–1044. [PubMed] [Google Scholar]
  9. Faraj B. A., Bowen P. A., Isaacs J. W., Rudman D. Hypertyraminemia in cirrhotic patients. N Engl J Med. 1976 Jun 17;294(25):1360–1364. doi: 10.1056/NEJM197606172942502. [DOI] [PubMed] [Google Scholar]
  10. Faraj B. A., Camp V. M., Ansley J., Ali F. M., Malveaux E. J. Impaired monoamine oxidase activity in dogs with portacaval shunt. Biochem Pharmacol. 1980 Oct 15;29(20):2831–2838. doi: 10.1016/0006-2952(80)90019-2. [DOI] [PubMed] [Google Scholar]
  11. Faraj B. A., Fulenwider J. T., Rypins E. B., Nordlinger B., Ivey G. L., Jansen R. D., Ali F. M., Camp V. M., Kutner M., Schmidt F. Tyramine kinetics and metabolism in cirrhosis. J Clin Invest. 1979 Aug;64(2):413–420. doi: 10.1172/JCI109477. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Faraj B. A., Mu J. Y., Lewis M. S., Wilson J. P., Israili Z. H., Dayton P. G. Determination of plasma and tissue levels of tyramine by radioimmunoassay. Proc Soc Exp Biol Med. 1975 Jul;149(3):664–669. doi: 10.3181/00379727-149-38875. [DOI] [PubMed] [Google Scholar]
  13. Faraj B. A., Newman S. L., Caplan D. B., Ali F. M., Camp V. M., Ahmann P. A. Evidence for hypertyraminemia in Reye's syndrome. Pediatrics. 1979 Jul;64(1):76–80. [PubMed] [Google Scholar]
  14. Kopin I. J., Weise V. K., Sedvall G. C. Effect of false transmitters on norepinephrine synthesis. J Pharmacol Exp Ther. 1969 Dec;170(2):246–252. [PubMed] [Google Scholar]
  15. Livingstone A. S., Potvin M., Goresky C. A., Finlayson M. H., Hinchey E. J. Changes in the blood-brain barrier in hepatic coma after hepatectomy in the rat. Gastroenterology. 1977 Oct;73(4 Pt 1):697–704. [PubMed] [Google Scholar]
  16. Lloyd K. G., Davidson L., Price K., McClung H. J., Gall D. G. Catecholamine and octopamine concentrations in brains of patients with Reye syndrome. Neurology. 1977 Oct;27(10):985–988. doi: 10.1212/wnl.27.10.985. [DOI] [PubMed] [Google Scholar]
  17. Muscholl E. Autonomic nervous system: newer mechanisms of adrenergic blockade. Annu Rev Pharmacol. 1966;6:107–128. doi: 10.1146/annurev.pa.06.040166.000543. [DOI] [PubMed] [Google Scholar]
  18. Newman S. L., Faraj B. A., Caplan D. B., Ali F. M., Camp V. M., Ahmann P. A. Prolactin and the encephalopathy of Reye's syndrome. Lancet. 1979 Nov 24;2(8152):1097–1100. doi: 10.1016/s0140-6736(79)92504-2. [DOI] [PubMed] [Google Scholar]
  19. Oldendorf W. H. Brain uptake of radiolabeled amino acids, amines, and hexoses after arterial injection. Am J Physiol. 1971 Dec;221(6):1629–1639. doi: 10.1152/ajplegacy.1971.221.6.1629. [DOI] [PubMed] [Google Scholar]
  20. Peuler J. D., Johnson G. A. Simultaneous single isotope radioenzymatic assay of plasma norepinephrine, epinephrine and dopamine. Life Sci. 1977 Sep 1;21(5):625–636. doi: 10.1016/0024-3205(77)90070-4. [DOI] [PubMed] [Google Scholar]
  21. Smith A. R., Rossi-Fanelli F., Ziparo V., James J. H., Perelle B. A., Fischer J. E. Alterations in plasma and CSF amino acids, amines and metabolites in hepatic coma. Ann Surg. 1978 Mar;187(3):343–350. doi: 10.1097/00000658-197803000-00024. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Tacker M., Creaven P. J., McIsaac W. M. Preliminary observations on the metabolism of (1- 14 C)tyramine in man. J Pharm Pharmacol. 1972 Mar;24(3):247–249. doi: 10.1111/j.2042-7158.1972.tb08974.x. [DOI] [PubMed] [Google Scholar]
  23. Wasterlain C. G., Lockwood A. H., Conn M. Chronic inhibition of brain protein synthesis after portacaval shunting. A possible pathogenic mechanism in chronic hepatic encephalopathy in the rat. Neurology. 1978 Mar;28(3):233–238. doi: 10.1212/wnl.28.3.233. [DOI] [PubMed] [Google Scholar]
  24. Weiner N., Cloutier G., Bjur R., Pfeffer R. I. Modification of norepinephrine synthesis in intact tissue dy drugs and during short-term adrenergic nerve stimulation. Pharmacol Rev. 1972 Jun;24(2):203–221. [PubMed] [Google Scholar]
  25. Weiner N., Selvaratnam I. The effect of tyramine on the synthesis of norepinephrine. J Pharmacol Exp Ther. 1968 May;161(1):21–33. [PubMed] [Google Scholar]

Articles from Journal of Clinical Investigation are provided here courtesy of American Society for Clinical Investigation

RESOURCES