Skip to main content
The Journal of Clinical Investigation logoLink to The Journal of Clinical Investigation
. 1981 Mar;67(3):838–846. doi: 10.1172/JCI110101

Fat Digestion in the Newborn

CHARACTERIZATION OF LIPASE IN GASTRIC ASPIRATES OF PREMATURE AND TERM INFANTS

Margit Hamosh 1,2, John W Scanlon 1,2, Dvora Ganot 1,2, Melodie Likel 1,2, Kathleen B Scanlon 1,2, Paul Hamosh 1,2
PMCID: PMC370635  PMID: 7204558

Abstract

We have measured lipolytic activity in gastric aspirates obtained at birth in a group of 142 infants. The infants ranged in gestational age from 26 to 41 wk. Lipolytic activity, measured by the hydrolysis of long chain triglyceride ([tri-3H]oleate), and expressed as nanomoles FFA per milliliter gastric aspirate per minute was 333±66 in 55 small premature infants (gestational age 26-34 wk and body wt 750-2,000 g) and 558±45 in a group of 87 larger infants (gestational age 35-41 wk and body wt 2,020-4,000 g). No activity was detected in seven infants with an unusually low pH in the gastric aspirate, 2.88±0.44 (compared with a mean pH level of 5.59±0.22 in the other 135 infants).

Attempts to characterize this lipase showed that it has a molecular weight of 44-48,000, pH optimum of 3.0-5.0, that FFA acceptors (albumin) stimulate activity, whereas bile salts, taurocholate and glycocholate, cause marked inhibition at concentration >3 mM. Our survey shows that enzyme activity is present as early as 26 wk of gestation, increases with gestational age, and has the same characteristics throughout gestation. The data show that the lipase in gastric aspirates differs from pancreatic lipase, but closely resembles human and rat lingual lipase. Because the lipase has a low pH optimum and does not require bile salts, it can act in the stomach where it initiates the hydrolysis of dietary fat. We suggest that intragastric lipolysis is probably of major importance in the newborn and especially in the premature infant where it compensates not only for low pancreatic lipase, but in addition, helps to overcome the temporary bile salt deficiency through the formation of amphiphilic reaction products.

Full text

PDF
838

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Andrews P. Molecular-sieve chromatography. Br Med Bull. 1966 May;22(2):109–114. doi: 10.1093/oxfordjournals.bmb.a070451. [DOI] [PubMed] [Google Scholar]
  2. Aw T. Y., Grigor M. R. Digestion and absorption of milk triacylglycerols in 14-day-old suckling rats. J Nutr. 1980 Nov;110(11):2133–2140. doi: 10.1093/jn/110.11.2133. [DOI] [PubMed] [Google Scholar]
  3. BORGSTROM B., DAHLQVIST A., LUNDH G., SJOVALL J. Studies of intestinal digestion and absorption in the human. J Clin Invest. 1957 Oct;36(10):1521–1536. doi: 10.1172/JCI103549. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Belfrage P., Vaughan M. Simple liquid-liquid partition system for isolation of labeled oleic acid from mixtures with glycerides. J Lipid Res. 1969 May;10(3):341–344. [PubMed] [Google Scholar]
  5. Bradley R. M., Mistretta C. M. Swallowing in fetal sheep. Science. 1973 Mar 9;179(4077):1016–1017. doi: 10.1126/science.179.4077.1016. [DOI] [PubMed] [Google Scholar]
  6. Bradshaw W. S., Rutter W. J. Multiple pancreatic lipases. Tissue distribution and pattern of accumulation during embryological development. Biochemistry. 1972 Apr 11;11(8):1517–1528. doi: 10.1021/bi00758a029. [DOI] [PubMed] [Google Scholar]
  7. Cohen M., Morgan R. G., Hofmann A. F. Lipolytic activity of human gastric and duodenal juice against medium and long chain triglycerides. Gastroenterology. 1971 Jan;60(1):1–15. [PubMed] [Google Scholar]
  8. Delachaume-Salem E., Sarles H. Evolution en fonction de l'age de la sécrétion pancréatique humaine normale. Biol Gastroenterol (Paris) 1970;2:135–146. [PubMed] [Google Scholar]
  9. Deschodt-Lanckman M., Robberecht P., Camus J., Baya C., Christophe J. Hormonal and dietary adaptation of rat pancreatic hydrolases before and after weaning. Am J Physiol. 1974 Jan;226(1):39–44. doi: 10.1152/ajplegacy.1974.226.1.39. [DOI] [PubMed] [Google Scholar]
  10. Di Sant'Agnese P. A., Talamo R. D. Pathogenesis and physiopathology of cystic fibrosis of the pancreas. Fibrocystic disease of the pancreas (Mucoviscidosis). N Engl J Med. 1967 Dec 28;277(26):1399+–1399+. doi: 10.1056/NEJM196712282772605. [DOI] [PubMed] [Google Scholar]
  11. Duritz G., Oltorf C. Lactobezoar formation associated with high-density caloric formula. Pediatrics. 1979 Apr;63(4):647–649. [PubMed] [Google Scholar]
  12. Erenberg A., Shaw R. D., Yousefzadeh D. Lactobezoar in the low-birth-weight infant. Pediatrics. 1979 Apr;63(4):642–646. [PubMed] [Google Scholar]
  13. Fredrikzon B., Hernell O., Bläckberg L., Olivecrona T. Bile salt-stimulated lipase in human milk: evidence of activity in vivo and of a role in the digestion of milk retinol esters. Pediatr Res. 1978 Nov;12(11):1048–1052. doi: 10.1203/00006450-197811000-00004. [DOI] [PubMed] [Google Scholar]
  14. Fredrikzon B., Hernell O. Role of feeding on lipase activity in gastric contents. Acta Paediatr Scand. 1977 Jul;66(4):479–484. doi: 10.1111/j.1651-2227.1977.tb07930.x. [DOI] [PubMed] [Google Scholar]
  15. Freudenberg E. A lipase in the milk of the gorilla. Experientia. 1966 May 15;22(5):317–317. doi: 10.1007/BF01900473. [DOI] [PubMed] [Google Scholar]
  16. Gooden J. M., Lascelles A. K. Relative importance of pancreatic lipase and pregastric esterase on lipid absorption in calves 1-2 weeks of age. Aust J Biol Sci. 1973 Jun;26(3):625–633. doi: 10.1071/bi9730625. [DOI] [PubMed] [Google Scholar]
  17. Grand R. J., Watkins J. B., Torti F. M. Development of the human gastrointestinal tract. A review. Gastroenterology. 1976 May;70(5 PT1):790–810. [PubMed] [Google Scholar]
  18. Grosskopf J. F. Studies on salivary lipase in young ruminants. Onderstepoort J Vet Res. 1965 Jun;32(1):153–180. [PubMed] [Google Scholar]
  19. Hahn P. Lipid metabolism and nutrition in the prenatal and postnatal period. Curr Concepts Nutr. 1972;1:99–134. [PubMed] [Google Scholar]
  20. Hambraeus L. Proprietary milk versus human breast milk in infant feeding. A critical appraisal from the nutritional point of view. Pediatr Clin North Am. 1977 Feb;24(1):17–36. doi: 10.1016/s0031-3955(16)33384-3. [DOI] [PubMed] [Google Scholar]
  21. Hamosh M. A review. Fat digestion in the newborn: role of lingual lipase and preduodenal digestion. Pediatr Res. 1979 May;13(5 Pt 1):615–622. doi: 10.1203/00006450-197905000-00008. [DOI] [PubMed] [Google Scholar]
  22. Hamosh M., Burns W. A. Lipolytic activity of human lingual glands (Ebner). Lab Invest. 1977 Dec;37(6):603–608. [PubMed] [Google Scholar]
  23. Hamosh M., Ganot D., Hamosh P. Rat lingual lipase. Characteristics of enzyme activity. J Biol Chem. 1979 Dec 10;254(23):12121–12125. [PubMed] [Google Scholar]
  24. Hamosh M., Hand A. R. Development of secretory activity in serous cells of the rat tongue. Cytological differentiation and accumulation of lingual lipase. Dev Biol. 1978 Jul;65(1):100–113. doi: 10.1016/0012-1606(78)90183-5. [DOI] [PubMed] [Google Scholar]
  25. Hamosh M., Klaeveman H. L., Wolf R. O., Scow R. O. Pharyngeal lipase and digestion of dietary triglyceride in man. J Clin Invest. 1975 May;55(5):908–913. doi: 10.1172/JCI108019. [DOI] [PMC free article] [PubMed] [Google Scholar]
  26. Hamosh M., Scow R. O. Lingual lipase and its role in the digestion of dietary lipid. J Clin Invest. 1973 Jan;52(1):88–95. doi: 10.1172/JCI107177. [DOI] [PMC free article] [PubMed] [Google Scholar]
  27. Hamosh M., Sivasubramanian K. N., Salzman-Mann C., Hamosh P. Fat digestion in the stomach of premature infants. I. Characteristics of lipase activity. J Pediatr. 1978 Oct;93(4):674–679. doi: 10.1016/s0022-3476(78)80915-9. [DOI] [PubMed] [Google Scholar]
  28. Helander H. F., Olivecrona T. Lipolysis and lipid absorption in the stomach of the suckling rat. Gastroenterology. 1970 Jul;59(1):22–35. [PubMed] [Google Scholar]
  29. Hernell O., Olivecrona T. Human milk lipases. I. Serum-stimulated lipase. J Lipid Res. 1974 Jul;15(4):367–374. [PubMed] [Google Scholar]
  30. Jubelin J., Boyer J. The lipolytic activity of human milk. Eur J Clin Invest. 1972 Nov;2(6):417–421. doi: 10.1111/j.1365-2362.1972.tb00671.x. [DOI] [PubMed] [Google Scholar]
  31. Laitio M., Lev R., Orlic D. The developing human fetal pancreas: an ultrastructural and histochemical study with special reference to exocrine cells. J Anat. 1974 Jul;117(Pt 3):619–634. [PMC free article] [PubMed] [Google Scholar]
  32. Lester R., Smallwood R. A., Little J. M., Brown A. S., Piasecki G. J., Jackson B. T. Fetal bile salt metabolism. The intestinal absorption of bile salt. J Clin Invest. 1977 Jun;59(6):1009–1016. doi: 10.1172/JCI108723. [DOI] [PMC free article] [PubMed] [Google Scholar]
  33. Muller D. P., McCollum J. P., Trompeter R. S., Harries J. T. Proceedings: Studies on the mechanism of fat absorption in congenital isolated lipase deficiency. Gut. 1975 Oct;16(10):838–838. [PubMed] [Google Scholar]
  34. Nelson J. H., Jensen R. G., Pitas R. E. Pregastric esterase and other oral lipases--a review. J Dairy Sci. 1977 Mar;60(3):327–362. doi: 10.3168/jds.S0022-0302(77)83873-3. [DOI] [PubMed] [Google Scholar]
  35. Norman A., Strandvik B., Ojamäe O. Bile acids and pancreatic enzymes during absorption in the newborn. Acta Paediatr Scand. 1972 Sep;61(5):571–576. doi: 10.1111/j.1651-2227.1972.tb15947.x. [DOI] [PubMed] [Google Scholar]
  36. Page E. W. Human fetal nutrition and growth. Am J Obstet Gynecol. 1969 Jun 1;104(3):378–387. doi: 10.1016/s0002-9378(16)34190-4. [DOI] [PubMed] [Google Scholar]
  37. Plucinski T. M., Hamosh M., Hamosh P. Fat digestion in rat: role of lingual lipase. Am J Physiol. 1979 Dec;237(6):E541–E547. doi: 10.1152/ajpendo.1979.237.6.E541. [DOI] [PubMed] [Google Scholar]
  38. RAPPORT M. M., ALONZO N. Photometric determination of fatty acid ester groups in phospholipides. J Biol Chem. 1955 Nov;217(1):193–198. [PubMed] [Google Scholar]
  39. ROSS C. A., SAMMONS H. G. Non-pancreatic lipase in children with pancreatic fibrosis. Arch Dis Child. 1955 Oct;30(153):428–431. doi: 10.1136/adc.30.153.428. [DOI] [PMC free article] [PubMed] [Google Scholar]
  40. Rey J., Frezal J., Royer P., Lamy M. L'absence congenitale de lipase pancreatique. Arch Fr Pediatr. 1966 Jan;23(1):5–14. [PubMed] [Google Scholar]
  41. Roy C. C., Weber A. M. Clinical implications of bile acids in paediatrics. Clin Gastroenterol. 1977 May;6(2):377–395. [PubMed] [Google Scholar]
  42. Roy R. N., Pollnitz R. B., Hamilton J. R., Chance G. W. Impaired assimilation of nasojejunal feeds in healthy low-birth-weight newborn infants. J Pediatr. 1977 Mar;90(3):431–434. doi: 10.1016/s0022-3476(77)80710-5. [DOI] [PubMed] [Google Scholar]
  43. SHELDON W. CONGENITAL PANCREATIC LIPASE DEFICIENCY. Arch Dis Child. 1964 Jun;39:268–271. doi: 10.1136/adc.39.205.268. [DOI] [PMC free article] [PubMed] [Google Scholar]
  44. Signer E. Gastric emptying in newborns and young infants. Measurement of the rate of emptying using indium-113m-microcolloid. Acta Paediatr Scand. 1975 May;64(3):525–530. doi: 10.1111/j.1651-2227.1975.tb03874.x. [DOI] [PubMed] [Google Scholar]
  45. Small D. M. A classification of biologic lipids based upon their interaction in aqeous systems. J Am Oil Chem Soc. 1968 Mar;45(3):108–119. doi: 10.1007/BF02915334. [DOI] [PubMed] [Google Scholar]
  46. Watkins J. B. Bile acid metabolism and fat absorption in newborn infants. Pediatr Clin North Am. 1974 May;21(2):501–512. doi: 10.1016/s0031-3955(16)33005-x. [DOI] [PubMed] [Google Scholar]
  47. Watkins J. B., Ingall D., Szczepanik P., Klein P. D., Lester R. Bile-salt metabolism in the newborn. Measurement of pool size and synthesis by stable isotope technic. N Engl J Med. 1973 Mar 1;288(9):431–434. doi: 10.1056/NEJM197303012880902. [DOI] [PubMed] [Google Scholar]
  48. Watkins J. B. Mechanisms of fat absorption and the development of gastrointestinal function. Pediatr Clin North Am. 1975 Nov;22(4):721–730. doi: 10.1016/s0031-3955(16)33203-5. [DOI] [PubMed] [Google Scholar]
  49. Watkins J. B., Szczepanik P., Gould J. B., Klein P., Lester R. Bile salt metabolism in the human premature infant. Preliminary observations of pool size and synthesis rate following prenatal administration of dexamethasone and phenobarbital. Gastroenterology. 1975 Sep;69(3):706–713. [PubMed] [Google Scholar]
  50. Williamson S., Finucane E., Ellis H., Gamsu H. R. Effect of heat treatment of human milk on absorption of nitrogen, fat, sodium, calcium, and phosphorus by preterm infants. Arch Dis Child. 1978 Jul;53(7):555–563. doi: 10.1136/adc.53.7.555. [DOI] [PMC free article] [PubMed] [Google Scholar]
  51. Zoppi G., Andreotti G., Pajno-Ferrara F., Njai D. M., Gaburro D. Exocrine pancreas function in premature and full term neonates. Pediatr Res. 1972 Dec;6(12):880–886. doi: 10.1203/00006450-197212000-00005. [DOI] [PubMed] [Google Scholar]
  52. de Belle R. C., Vaupshas V., Vitullo B. B., Haber L. R., Shaffer E., Mackie G. G., Owen H., Little J. M., Lester R. Intestinal absorption of bile salts: immature development in the neonate. J Pediatr. 1979 Mar;94(3):472–476. doi: 10.1016/s0022-3476(79)80604-6. [DOI] [PubMed] [Google Scholar]

Articles from Journal of Clinical Investigation are provided here courtesy of American Society for Clinical Investigation

RESOURCES