Skip to main content
The Journal of Clinical Investigation logoLink to The Journal of Clinical Investigation
. 1981 Apr;67(4):923–930. doi: 10.1172/JCI110141

Regulation of hepatic triglyceride synthesis in diabetic rats.

V K Murthy, J C Shipp
PMCID: PMC370648  PMID: 7009655

Abstract

The syntheses of triglyceride and its precursors were increased when liver homogenates of ketotic diabetic rats were incubated with [U-14C]-glycero 3-phosphate and cofactors. Triolein sonicates produced a concentration-dependent inhibition of the synthesis of both diglyceride and triglyceride, whereas monoolein sonicates had no effect. Rat serum very low density lipoproteins, like triolein sonicates, inhibited the synthesis of diglyceride and triglyceride. Furthermore, the intracellular form of very low density lipoproteins, namely nascent very low density lipoproteins, also inhibited the synthesis of diglyceride and triglyceride. A higher apparent I50 (concentration of inhibitor that produces 50% inhibition of activity) was observed in liver homogenates of ketotic diabetic rats for inhibition of triglyceride or diglyceride synthesis by triolein sonicates, serum very low density lipoproteins, high density lipoproteins, and nascent very low density lipoproteins. Insulin treatment of the diabetic rats reversed the I50 values to control. In studies on the site of inhibition of triglyceride synthesis in the overall biosynthetic pathway, serum very low density lipoproteins produced a concentration-dependent inhibition of liver cytosolic phosphatidate phosphohydrolase activity. A higher I50 value was obtained with the hepatic enzyme of the diabetic rats. This higher I50 value was reversed to control by insulin treatment of the diabetic rats. These results indicated that the activity of this enzyme was less sensitive to inhibition by very low density lipoproteins in the ketotic diabetic state. The reduced sensitivity of phosphatidate phosphohydrolase activity to triglyceride inhibition observed in the present studies could explain our previous observation of an increased rate of triglyceride synthesis in ketotic diabetic liver homogenates.

Full text

PDF
923

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Brindley D. N., Bowley M., Sturton R. G., Pritchard P. H., Burditt S. L., Cooling J. The control of phosphatidate metabolism by amphiphilic drugs and by bivalent cations. Biochem Soc Trans. 1977;5(1):40–43. doi: 10.1042/bst0050040. [DOI] [PubMed] [Google Scholar]
  2. Chapman M. J., Mills G. L., Taylaur C. E. Lipoprotein particles from the Golgi apparatus of guinea-pig liver. Biochem J. 1972 Jul;128(4):779–787. doi: 10.1042/bj1280779. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Eisenberg S., Levy R. I. Lipoprotein metabolism. Adv Lipid Res. 1975;13:1–89. [PubMed] [Google Scholar]
  4. Felker T. E., Fainaru M., Hamilton R. L., Havel R. J. Secretion of the arginine-rich and A-I apolipoproteins by the isolated perfused rat liver. J Lipid Res. 1977 Jul;18(4):465–473. [PubMed] [Google Scholar]
  5. HAVEL R. J., EDER H. A., BRAGDON J. H. The distribution and chemical composition of ultracentrifugally separated lipoproteins in human serum. J Clin Invest. 1955 Sep;34(9):1345–1353. doi: 10.1172/JCI103182. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Jamdar S. C., Fallon H. J. Glycerolipid synthesis in rat adipose tissue. II. Properties and distribution of phosphatidate phosphatase. J Lipid Res. 1973 Sep;14(5):517–524. [PubMed] [Google Scholar]
  7. Jamdar S. C., Shapiro D., Fallon H. J. Triacylglycerol biosynthesis in the adipose tissue of the obese-hyperglycaemic mouse. Biochem J. 1976 Aug 15;158(2):327–334. doi: 10.1042/bj1580327. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Lamb R. G., Fallon H. J. An enzymatic explanation for dietary induced alterations in hepatic glycerolipid metabolism. Biochim Biophys Acta. 1974 Apr 26;348(1):179–188. doi: 10.1016/0005-2760(74)90104-0. [DOI] [PubMed] [Google Scholar]
  9. Lamb R. G., Fallon H. J. Glycerolipid formation from sn-glycerol-3-phosphate by rat liver cell fractions. The role of phosphatidate phosphohydrolase. Biochim Biophys Acta. 1974 Apr 26;348(1):166–178. doi: 10.1016/0005-2760(74)90103-9. [DOI] [PubMed] [Google Scholar]
  10. Lamb R. G., Wood C. K., Fallon H. J. The effect of acute and chronic ethanol intake on hepatic glycerolipid biosynthesis in the hamster. J Clin Invest. 1979 Jan;63(1):14–20. doi: 10.1172/JCI109268. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Lamb R. G., Wyrick S. D., Piantadosi C. Hypolipidemic activity of in vitro inhibitors of hepatic and intestinal sn-glycerol-3-phosphate acyltransferase and phosphatidate phosphohydrolase. Atherosclerosis. 1977 Jun;27(2):147–154. doi: 10.1016/0021-9150(77)90052-1. [DOI] [PubMed] [Google Scholar]
  12. Mahley R. W., Bersot T. P., LeQuire V. S., Levy R. I., Windmueller H. G., Brown W. V. Identity of very low density lipoprotein apoproteins of plasma and liver Golgi apparatus. Science. 1970 Apr 17;168(3929):380–382. doi: 10.1126/science.168.3929.380. [DOI] [PubMed] [Google Scholar]
  13. Mahley R. W., Hamilton R. L., Lequire V. S. Characterization of lipoprotein particles isolated from the Golgi apparatus of rat liver. J Lipid Res. 1969 Jul;10(4):433–439. [PubMed] [Google Scholar]
  14. Mangiapane E. H., Lloyd-Davies K. A., Brindley D. N. A study of some enzymes of glycerolipid biosynthesis in rat liver after subtotal hepatectomy. Biochem J. 1973 May;134(1):103–112. doi: 10.1042/bj1340103. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Murthy V. K., Shipp J. C. Accumulation of myocardial triglycerides ketotic diabetes; evidence for increased biosynthesis. Diabetes. 1977 Mar;26(3):222–229. doi: 10.2337/diab.26.3.222. [DOI] [PubMed] [Google Scholar]
  16. Murthy V. K., Shipp J. C. Synthesis and accumulation of triglycerides in liver of diabetic rats. Effects of insulin treatment. Diabetes. 1979 May;28(5):472–478. doi: 10.2337/diab.28.5.472. [DOI] [PubMed] [Google Scholar]
  17. Polheim D., David J. S., Schultz F. M., Wylie M. B., Johnston J. M. Regulation of triglyceride biosynthesis in adipose and intestinal tissue. J Lipid Res. 1973 Jul;14(4):415–421. [PubMed] [Google Scholar]
  18. Roncari D. A., Murthy V. K. Effects of thyroid hormones on enzymes involved in fatty acid and glycerolipid synthesis. J Biol Chem. 1975 Jun 10;250(11):4134–4138. [PubMed] [Google Scholar]
  19. Savolainen M. J. Stimulation of hepatic phosphatidate phosphohydrolase activity by a single dose of ethanol;. Biochem Biophys Res Commun. 1977 Mar 21;75(2):511–518. doi: 10.1016/0006-291x(77)91071-3. [DOI] [PubMed] [Google Scholar]
  20. Soler-Argilaga C., Russell R. L., Heimberg M. Reciprocal relationship between uptake of Ca++ and biosynthesis of glycerolipids from sn-glycerol-3-phosphate by rat liver microsomes. Biochem Biophys Res Commun. 1977 Oct 10;78(3):1053–1059. doi: 10.1016/0006-291x(77)90527-7. [DOI] [PubMed] [Google Scholar]
  21. Whiting P. H., Bowley M., Sturton R. G., Pritchard P. H., Brindley D. N., Hawthorne J. N. The effect of chronic diabetes, induced by streptozotocin, on the activities of some enzymes of glycerolipid synthesis in rat liver. Biochem J. 1977 Nov 15;168(2):147–153. doi: 10.1042/bj1680147. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Journal of Clinical Investigation are provided here courtesy of American Society for Clinical Investigation

RESOURCES