Abstract
An animal model was used to determine the basis for the increase in purine biosynthesis that results from hepatic depletion of purine nucleotides, such as seen in patients with type I glycogen storage disease or following fructose administration. Mice were injected intravenously with glucose or fructose, 2.5 mg/g of body weight, and the animals were killed at 0, 3, and 30 min following carbohydrate infusion. Fructose, but not glucose, administration led to a threefold increase in [14C]glycine incorporation into hepatic purine nucleotides documenting an increase in the rate of purine biosynthesis in the liver of fructose-treated animals. In the fructose, but not the glucose-treated animals, there was a reduction in the hepatic content of purine nucleotides that are inhibitory for amidophosphoribosyltransferase, the enzyme that catalyzes the first reaction unique to the pathway of purine biosynthesis. PP-ribose-P, an important metabolite in the control of purine biosynthesis, was increased 2,3-fold in liver following fructose, but not glucose administration. In conjunction with the decrease in inhibitory nucleotides and increase in PP-ribose-P 29% of amidophosphoribosyltransferase was shifted from the large inactive to the small active form of the enzyme. Results of these studies demonstrate that the end-products of the pathway, purine nucleotides, control the activity of the enzyme that catalyzes the first reaction leading to purine nucleotide synthesis either through a direct effect of purine nucleotides on the enzyme, through an indirect effect of the change in nucleotides on PP-ribose-P synthesis, or a combination of these effects. The resultant changes in amidophosphoribosyltransferase conformation and activity provide a basis for understanding the increase in purine biosynthesis that results from hepatic depletion of purine nucleotides.
Full text
PDF








Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Alepa F. P., Howell R. R., Klinenberg J. R., Seegmiller J. E. Relationships between glycogen storage disease and tophaceous gout. Am J Med. 1967 Jan;42(1):58–66. doi: 10.1016/0002-9343(67)90006-x. [DOI] [PubMed] [Google Scholar]
- Clifford A. J., Riumallo J. A., Baliga B. S., Munro H. N., Brown P. R. Liver nucleotide metabolism in relation to amino acid supply. Biochim Biophys Acta. 1972 Sep 14;277(3):443–458. doi: 10.1016/0005-2787(72)90087-1. [DOI] [PubMed] [Google Scholar]
- Crabtree G. W., Henderson J. F. Rate-limiting steps in the interconversion of purine ribonucleotides in Ehrlich ascites tumor cells in vitro. Cancer Res. 1971 Jul;31(7):985–991. [PubMed] [Google Scholar]
- Emmerson B. T. Effect of oral fructose on urate production. Ann Rheum Dis. 1974 May;33(3):276–280. doi: 10.1136/ard.33.3.276. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Fine R. N., Strauss J., Donnell G. N. Hyperuricemia in glycogen-storage disease type 1. Am J Dis Child. 1966 Dec;112(6):572–576. doi: 10.1001/archpedi.1966.02090150116013. [DOI] [PubMed] [Google Scholar]
- Greene H. L., Wilson F. A., Hefferan P., Terry A. B., Moran J. R., Slonim A. E., Claus T. H., Burr I. M. ATP depletion, a possible role in the pathogenesis of hyperuricemia in glycogen storage disease type I. J Clin Invest. 1978 Aug;62(2):321–328. doi: 10.1172/JCI109132. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Hahn R., Oberrauch W., Mecke D. Activation of glutaminase by phosphoribosyl-pyrophosphate and its interference with the assay of phosphoribosylpyrophosphate amidotransferase. Biochim Biophys Acta. 1979 Jan 12;566(1):152–156. doi: 10.1016/0005-2744(79)90257-2. [DOI] [PubMed] [Google Scholar]
- Holmes E. W., McDonald J. A., McCord J. M., Wyngaarden J. B., Kelley W. N. Human glutamine phosphoribosylpyrophosphate amidotransferase. Kinetic and regulatory properties. J Biol Chem. 1973 Jan 10;248(1):144–150. [PubMed] [Google Scholar]
- Holmes E. W., Wyngaarden J. B., Kelley W. N. Human glutamine phosphoribosylpyrophosphate amidotransferase. Two molecular forms interconvertible by purine ribonucleotides and phosphoribosylpyrophosphate. J Biol Chem. 1973 Sep 10;248(17):6035–6040. [PubMed] [Google Scholar]
- Howell R. R. Hyperuricemia in childhood. Fed Proc. 1968 Jul-Aug;27(4):1078–1082. [PubMed] [Google Scholar]
- Howell R. R. The interrelationship of glycogen storage disease and gout. Arthritis Rheum. 1965 Oct;8(5):780–785. doi: 10.1002/art.1780080441. [DOI] [PubMed] [Google Scholar]
- Itakura M., Holmes E. W. Human amidophosphoribosyltransferase. An oxygen-sensitive iron-sulfur protein. J Biol Chem. 1979 Jan 25;254(2):333–338. [PubMed] [Google Scholar]
- Jakovcic S., Sorensen L. B. Studies of uric acid metabolism in glycogen storage disease associated with gouty arthritis. Arthritis Rheum. 1967 Apr;10(2):129–134. doi: 10.1002/art.1780100207. [DOI] [PubMed] [Google Scholar]
- LOWRY O. H., ROSEBROUGH N. J., FARR A. L., RANDALL R. J. Protein measurement with the Folin phenol reagent. J Biol Chem. 1951 Nov;193(1):265–275. [PubMed] [Google Scholar]
- Lalanne M., Henderson J. F. Determination of 5-phosphoribosyl 1-pyrophosphate in mouse liver. Anal Biochem. 1974 Nov;62(1):121–133. doi: 10.1016/0003-2697(74)90373-x. [DOI] [PubMed] [Google Scholar]
- Lalanne M., Henderson J. F. Effects of hormones and drugs on phosphoribosyl pyrophosphate concentrations in mouse liver. Can J Biochem. 1975 Mar;53(3):394–399. doi: 10.1139/o75-055. [DOI] [PubMed] [Google Scholar]
- Raivio K. O., Becker 7. A., Meyer L. J., Greene M. L., Nuki G., Seegmiller J. E. Stimulation of human purine synthesis de novo by fructose infusion. Metabolism. 1975 Jul;24(7):861–869. doi: 10.1016/0026-0495(75)90133-x. [DOI] [PubMed] [Google Scholar]
- Roe T. F., Kogut M. D. The pathogenesis of hyperuricemia in glycogen storage disease, type I. Pediatr Res. 1977 May;11(5):664–669. doi: 10.1203/00006450-197705000-00008. [DOI] [PubMed] [Google Scholar]
- Rose L. M., Brockman R. W. Analysis by high-pressure liquid chromatography of 9-beta-D-arabinofuranosyladenine 5'-triphosphate levels in murine leukemia cells. J Chromatogr. 1977 Mar 21;133(2):335–343. doi: 10.1016/s0021-9673(00)83491-3. [DOI] [PubMed] [Google Scholar]
- Thomas C. B., Arnold W. J., Kelley W. N. Human adenine phosphoribosyltransferase. Purification, subunit structure, and substrate specificity. J Biol Chem. 1973 Apr 10;248(7):2529–2535. [PubMed] [Google Scholar]
- Van den Berghe G. Metabolic effects of fructose in the liver. Curr Top Cell Regul. 1978;13:97–135. doi: 10.1016/b978-0-12-152813-3.50008-2. [DOI] [PubMed] [Google Scholar]