Skip to main content
The Journal of Clinical Investigation logoLink to The Journal of Clinical Investigation
. 1981 Apr;67(4):1126–1133. doi: 10.1172/JCI110126

Maternal Thyroid Function is the Major Determinant of Amniotic Fluid 3,3′,5′-Triiodothyronine in the Rat

Mohamed M El-Zaheri 1, Apostolos G Vagenakis 1, Lee Hinerfeld 1, Charles H Emerson 1, Lewis E Braverman 1
PMCID: PMC370673  PMID: 7204570

Abstract

3,3′,5′-triiodothyronine, (rT3), is easily measured in human amniotic fluid (AF) during the second and third trimesters. To determine if AF rT3 levels are maintained by either maternal or fetal thyroid function, or both, models of fetal hypothyroidism (FH), maternal hypothyroidism (MH), and combined maternal and fetal hypothyroidism (MFH) were developed in pregnant rats. Hormone analyses of maternal and fetal serum and AF were performed at term. Thyroxine (T4) and 3,3′,5-triiodothyronine (T3) were not detectable in the sera and AF of term fetuses in all groups. MFH rats were prepared by administration of methimazole to the dams, and in some experiments, by maternal thyroidectomy and a low iodine diet as well. In the MFH groups from the three experiments serum thyrotropin (TSH) was markedly elevated in the dams and in the fetuses. FH rats were prepared by administering T4 by various routes to dams treated according to the MFH protocols and serum TSH was elevated in fetal serum. Analysis of FH maternal serum T4, T3, and TSH concentrations suggested mild maternal hyperthyroidism or hypothyroidism depending upon the schedule of T4 administration. The MH groups were prepared by maternal thyroidectomy and in all experiments the fetuses had normal serum TSH concentrations. The degree of maternal hypothyroidism in the MH and MFH groups was equivalent. The mean concentration of AF rT3 in normal rats in three experiments was 28.4±2.5 ng/dl (±SEM). In the three experiments, AF rT3 was undetectable or markedly reduced in the MH and MFH rats and was normal in the FH rats. These results in the amniotic fluid could not be explained by transfer of rT3 from fetal serum to the AF because fetal serum rT3 concentrations in these various models did not correlate with AF rT3 concentration. Furthermore, infusion of large doses of rT3 in MFH dams resulted in a 35-fold elevation in maternal serum rT3 concentration, a twofold elevation in fetal serum rT3 concentration, and only a minimal increase in AF rT3. These studies demonstrated that, in the rat, the maternal thyroid has the dominant role in maintaining AF rT3, whereas little effect of fetal thyroid status on AF rT3 could be demonstrated. Transfer of maternal rT3 or of fetal rT3 derived from maternal T4 to the AF do not appear to be the mechanisms whereby the maternal thyroid maintains AF rT3.

Full text

PDF
1126

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Balázs R., Kovács S., Teichgräber P., Cocks W. A., Eayrs J. T. Biochemical effects of thyroid deficiency on the developing brain. J Neurochem. 1968 Nov;15(11):1335–1349. doi: 10.1111/j.1471-4159.1968.tb05913.x. [DOI] [PubMed] [Google Scholar]
  2. Burman K. D., Read J., Dimond R. C., Strum D., Wright F. D., Patow W., Earll J. M., Wartofsky L. Measurement of 3,3',5'-Triiodothyroinine (reverse T3), 3,3'-L-diiodothyronine, T3 and T4 in human amniotic fluid and in cord and maternal serum. J Clin Endocrinol Metab. 1976 Dec;43(6):1351–1359. doi: 10.1210/jcem-43-6-1351. [DOI] [PubMed] [Google Scholar]
  3. Chopra I. J., Crandall B. F. Thyroid hormones and thyrotropin in amniotic fluid. N Engl J Med. 1975 Oct 9;293(15):740–743. doi: 10.1056/NEJM197510092931503. [DOI] [PubMed] [Google Scholar]
  4. Chopra I. J., Hollingsworth D. R., Davis S. L., Belin R. P., Reid M. C. Amniotic fluid 3,3'-and 3'5'-diiodothyronine in fetal hypothyroidism in sheep. Endocrinology. 1979 Mar;104(3):596–598. doi: 10.1210/endo-104-3-596. [DOI] [PubMed] [Google Scholar]
  5. Chopra I. J., Sack J., Fisher D. A. Circulating 3,3', 5'-triiodothyronine (reverse T3) in the human newborn. J Clin Invest. 1975 Jun;55(6):1137–1141. doi: 10.1172/JCI108030. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Cocks J. A., Balázs R., Johnson A. L., Eayrs J. T. Effect of thyroid hormone on the biochemical maturation of rat brain: conversion of glucose-carbon into amino acids. J Neurochem. 1970 Aug;17(8):1275–1285. doi: 10.1111/j.1471-4159.1970.tb03376.x. [DOI] [PubMed] [Google Scholar]
  7. Connors J. M., Hedge G. A. Feedback effectiveness of periodic versus constant triiodothyronine replacement. Endocrinology. 1980 Mar;106(3):911–917. doi: 10.1210/endo-106-3-911. [DOI] [PubMed] [Google Scholar]
  8. Cooper E., Manning D. M., MacLennan A. H., Burke C. W. Thyroid hormones in human amniotic fluid: detection of tri-iodothyronine and free levels of thyroxine, tri-iodothyronine and 3,3',5'-tri-iodothyronine [proceedings]. J Endocrinol. 1977 Jun;73(3):44P–44P. [PubMed] [Google Scholar]
  9. Cragg B. G. Synapses and membranous bodies in experimental hypothyroidism. Brain Res. 1970 Mar 3;18(2):297–307. doi: 10.1016/0006-8993(70)90330-6. [DOI] [PubMed] [Google Scholar]
  10. Dussault J. H., Coulombe P. Minimal placental transfer of L-thyroxine (T4) in the rat. Pediatr Res. 1980 Mar;14(3):228–231. doi: 10.1203/00006450-198003000-00010. [DOI] [PubMed] [Google Scholar]
  11. Dussault J. H., Walker P. The effect of iodine deficiency and propylthiouracil on the hypothalamo--pituitary--thyroid axis in the neonatal rat. Can J Physiol Pharmacol. 1978 Dec;56(6):950–955. doi: 10.1139/y78-151. [DOI] [PubMed] [Google Scholar]
  12. EAYRS J. T. The cerebral cortex of normal and hypothyroid rats. Acta Anat (Basel) 1955;25(2-4):160–183. doi: 10.1159/000141068. [DOI] [PubMed] [Google Scholar]
  13. Eisenstein Z., Hagg S., Vagenakis A. G., Fang S. L., Ransil B., Burger A., Balsam A., Braverman L. E., Ingbar S. H. Effect of starvation on the production and peripheral metabolism of 3,3',5'-triiodothyronine in euthyroid obese subjects. J Clin Endocrinol Metab. 1978 Oct;47(4):889–893. doi: 10.1210/jcem-47-4-889. [DOI] [PubMed] [Google Scholar]
  14. Fisher D. A. Editorial: Reverse tri-iodothyronine and fetal thyroid state. N Engl J Med. 1975 Oct 9;293(15):770–772. doi: 10.1056/NEJM197510092931511. [DOI] [PubMed] [Google Scholar]
  15. Geel S. E., Timiras P. S. The influence of neonatal hypothyroidism and of thyroxine on the ribonucleic acid and deoxyribonucleic acid concentrations of rat cerebral cortex. Brain Res. 1967 Mar;4(2):135–142. doi: 10.1016/0006-8993(67)90002-9. [DOI] [PubMed] [Google Scholar]
  16. Gourdon J., Clos J., Coste C., Dainat J., Legrand J. Comparative effects of hypothyroidism, hyperthyroidism and undernutrition on the protein and nucleic acid contents of the cerebellum in the young rat. J Neurochem. 1973 Oct;21(4):861–871. doi: 10.1111/j.1471-4159.1973.tb07530.x. [DOI] [PubMed] [Google Scholar]
  17. Gray B., Galton V. A. The transplacental passage of thyroxine and foetal thyroid function in the rat. Acta Endocrinol (Copenh) 1974 Apr;75(4):725–733. doi: 10.1530/acta.0.0750725. [DOI] [PubMed] [Google Scholar]
  18. HAMBURGH M., LYNN E., WEISS E. P. ANALYSIS OF THE INFLUENCE OF THYROID HORMONE ON PRENATAL AND POSTNATAL MATURATION OF THE RAT. Anat Rec. 1964 Oct;150:147–161. doi: 10.1002/ar.1091500206. [DOI] [PubMed] [Google Scholar]
  19. Holt A. B., Cheek D. B., Kerr G. R. Prenatal hypothyroidism and brain composition in a primate. Nature. 1973 Jun 15;243(5407):413–415. doi: 10.1038/243413a0. [DOI] [PubMed] [Google Scholar]
  20. Klein A. H., Murphy B. E., Artal R., Oddie T. H., Fisher D. A. Amniotic fluid thyroid hormone concentrations during human gestation. Am J Obstet Gynecol. 1980 Mar 1;136(5):626–630. doi: 10.1016/0002-9378(80)91014-5. [DOI] [PubMed] [Google Scholar]
  21. Landau H., Sack J., Frucht H., Palti Z., Hochner-Celnikier D., Rosenmann A. Amniotic fluid 3,3',5'-triiodothyronine in the detection of congenital hypothyroidism. J Clin Endocrinol Metab. 1980 Apr;50(4):799–801. doi: 10.1210/jcem-50-4-799. [DOI] [PubMed] [Google Scholar]
  22. Murphy B. E. Chorionic membrane as an extra-adrenal source of foetal cortisol in human amniotic fluid. Nature. 1977 Mar 10;266(5598):179–181. doi: 10.1038/266179a0. [DOI] [PubMed] [Google Scholar]
  23. Nicholson J. L., Altman J. The effects of early hypo- and hyperthyroidism on the development of rat cerebellar cortex. I. Cell proliferation and differentiation. Brain Res. 1972 Sep 15;44(1):13–23. doi: 10.1016/0006-8993(72)90362-9. [DOI] [PubMed] [Google Scholar]
  24. PICKERING D. E., FISHER D. A. Growth and metabolism in normal and thyroid-ablated infant rhesus monkeys (Macaca mulatta). II. Growth and metabolism in thyroid-ablated infant rhesus monkeys (Macaca mulatta). AMA Am J Dis Child. 1953 Jul;86(1):11–22. doi: 10.1001/archpedi.1953.02050080018002. [DOI] [PubMed] [Google Scholar]
  25. Riddick D. H., Maslar I. A., Luciano A. A., Raye J. R. Thyroxine uptake and metabolism by fetal sheep after intra-amniotic thyroxine injection. Am J Obstet Gynecol. 1979 Mar 15;133(6):618–623. doi: 10.1016/0002-9378(79)90007-3. [DOI] [PubMed] [Google Scholar]
  26. Rosman N. P., Malone M. J., Helfenstein M., Kraft E. The effect of thyroid deficiency on myelination of brain. A morphological and biochemical study. Neurology. 1972 Jan;22(1):99–106. doi: 10.1212/wnl.22.1.99. [DOI] [PubMed] [Google Scholar]
  27. Roti E., Malavasi F., Bandini P., Robuschi G., Benassi L., Gnudi A. 3,3',5'-Triiodothyronine concentrations in amniotic fluid at different stages of pregnancy. J Endocrinol Invest. 1979 Apr-Jun;2(2):213–216. doi: 10.1007/BF03349316. [DOI] [PubMed] [Google Scholar]
  28. Tonooka N., Greer M. A. The effect of graded doses of thyroxine on plasma thyrotropin concentration in rats made hypothyroid by thyroidectomy or propylthiouracil. Endocrinology. 1980 Mar;106(3):818–822. doi: 10.1210/endo-106-3-818. [DOI] [PubMed] [Google Scholar]

Articles from Journal of Clinical Investigation are provided here courtesy of American Society for Clinical Investigation

RESOURCES