Skip to main content
The Journal of Clinical Investigation logoLink to The Journal of Clinical Investigation
. 1981 May;67(5):1383–1391. doi: 10.1172/JCI110166

Reversal of Hemodialysis Granulocytopenia and Pulmonary Leukostasis

A CLINICAL MANIFESTATION OF SELECTIVE DOWN-REGULATION OF GRANULOCYTE RESPONSES TO C5adesarg

Keith M Skubitz 1, Philip R Craddock 1
PMCID: PMC370704  PMID: 7229031

Abstract

The transient granulocytopenia of hemodialysis results indirectly from plasma complement activation by dialyzer cellophane membranes. The C5adesarg so produced can induce reversible granulocyte aggregation in vitro and in vivo, and we hypothesized that the pulmonary leukostasis responsible for the granulocytopenia results from embolization of aggregates formed under the influence of C5adesarg produced in the dialyzer. These studies were designed to measure C5adesarg generation during dialysis by granulocyte aggregometry and to determine the reason for the transience of the leukostasis. C5adesarg generation was equally evident throughout dialysis, persisting well after granulocytopenia had reversed, and dialyzer-induced complement activation was insufficient to produce significant depletion of plasma complement titers. That granulocyte deactivation might be responsible for the transience was suggested by the absence of the usual granulocytopenia in a patient with uniquely high levels of C5adesarg in his predialysis plasma. Granulocytes drawn from seven stable uremic patients after granulocytopenia had reversed exhibited a dose-related, selective and irreversible refractoriness to stimulation with C5adesarg, but their responses to n-formyl-Met-Leu-Phe remained normal. Identical deactivation was produced in normal cells by short- or long-term exposure of C5adesarg in vitro. These studies suggest that C5adesarg is indeed generated by the dialyzer throughout hemodialysis and that the transience of the leukostasis and granulocytopenia is due to selective down-regulation of cellular responses to C5adesarg—a phenomenon that hitherto has been described only in vitro and that may be important in limiting the deleterious effects of adherent granulocytes on the endothelium in patients with intravascular complement activation.

Full text

PDF
1383

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Agnello V. Complement deficiency states. Medicine (Baltimore) 1978 Jan;57(1):1–23. doi: 10.1097/00005792-197801000-00001. [DOI] [PubMed] [Google Scholar]
  2. Boucek M. M., Snyderman R. Calcium influx requirement for human neutrophil chemotaxis: inhibition by lanthanum chloride. Science. 1976 Sep 3;193(4256):905–907. doi: 10.1126/science.948752. [DOI] [PubMed] [Google Scholar]
  3. Brubaker L. H., Nolph K. D. Mechanisms of recovery from neutropenia induced by hemodialysis. Blood. 1971 Nov;38(5):623–631. [PubMed] [Google Scholar]
  4. Camussi G., Tetta C., Bussolino F., Cappio F. C., Coda R., Masera C., Segoloni G. Mediators of immune complex-induced aggregation of polymorphonuclear neutrophils. I. C5a anaphylatoxin, neutrophil cationic proteins and their cleavage fragments. Int Arch Allergy Appl Immunol. 1980;62(1):1–15. doi: 10.1159/000232478. [DOI] [PubMed] [Google Scholar]
  5. Chenoweth D. E., Hugli T. E. Demonstration of specific C5a receptor on intact human polymorphonuclear leukocytes. Proc Natl Acad Sci U S A. 1978 Aug;75(8):3943–3947. doi: 10.1073/pnas.75.8.3943. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Craddock P. R., Fehr J., Brigham K. L., Kronenberg R. S., Jacob H. S. Complement and leukocyte-mediated pulmonary dysfunction in hemodialysis. N Engl J Med. 1977 Apr 7;296(14):769–774. doi: 10.1056/NEJM197704072961401. [DOI] [PubMed] [Google Scholar]
  7. Craddock P. R., Fehr J., Dalmasso A. P., Brighan K. L., Jacob H. S. Hemodialysis leukopenia. Pulmonary vascular leukostasis resulting from complement activation by dialyzer cellophane membranes. J Clin Invest. 1977 May;59(5):879–888. doi: 10.1172/JCI108710. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Craddock P. R., Fehr J., Jacob H. S. Complement-mediated granulocyte dysfunction in paroxysmal nocturnal hemoglobinuria. Blood. 1976 Jun;47(6):931–939. [PubMed] [Google Scholar]
  9. Craddock P. R., Hammerschmidt D., White J. G., Dalmosso A. P., Jacob H. S. Complement (C5-a)-induced granulocyte aggregation in vitro. A possible mechanism of complement-mediated leukostasis and leukopenia. J Clin Invest. 1977 Jul;60(1):260–264. doi: 10.1172/JCI108763. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Craddock P. R., White J. G., Weisdorf D. J., Hammerschmidt D. E. Digital integration of granulocyte aggregation responses. A simple and reproducible method for the quantitation of granulocyte adhesiveness. Inflammation. 1980 Dec;4(4):381–395. doi: 10.1007/BF00916049. [DOI] [PubMed] [Google Scholar]
  11. Goldblum S. E., Van Epps D. E., Reed W. P. Serum inhibitor of C5 fragment-mediated polymorphonuclear leukocyte chemotaxis associated with chronic hemodialysis. J Clin Invest. 1979 Jul;64(1):255–264. doi: 10.1172/JCI109446. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Hammerschmidt D. E., Weaver L. J., Hudson L. D., Craddock P. R., Jacob H. S. Association of complement activation and elevated plasma-C5a with adult respiratory distress syndrome. Pathophysiological relevance and possible prognostic value. Lancet. 1980 May 3;1(8175):947–949. doi: 10.1016/s0140-6736(80)91403-8. [DOI] [PubMed] [Google Scholar]
  13. Hammerschmidt D. E., White J. G., Craddock P. R., Jacob H. S. Corticosteroids inhibit complement-induced granulocyte aggregation. A possible mechanism for their efficacy in shock states. J Clin Invest. 1979 Apr;63(4):798–803. doi: 10.1172/JCI109365. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Issekutz A. C., Biggar W. D. Influence of serum-derived chemotactic factors and bacterial products on human neutrophil chemotaxis. Infect Immun. 1977 Jan;15(1):212–220. doi: 10.1128/iai.15.1.212-220.1977. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Klempner M. S., Gallin J. I., Balow J. E., Van Kammen D. P. The effect of hemodialysis and C5a des arg on neutrophil subpopulations. Blood. 1980 May;55(5):777–783. [PubMed] [Google Scholar]
  16. Lowrie E. G., Lazarus J. M., Mocelin A. J., Bailey G. L., Hampers C. L., Wilson R. E., Merrill J. P. Survival of patients undergoing chronic hemodialysis and renal transplantation. N Engl J Med. 1973 Apr 26;288(17):863–867. doi: 10.1056/NEJM197304262881701. [DOI] [PubMed] [Google Scholar]
  17. McEvoy J., Kelly A. M. Psoriatic clearance during haemodialysis. Ulster Med J. 1976;45(1):76–78. [PMC free article] [PubMed] [Google Scholar]
  18. Niedel J. E., Kahane I., Cuatrecasas P. Receptor-mediated internalization of fluorescent chemotactic peptide by human neutrophils. Science. 1979 Sep 28;205(4413):1412–1414. doi: 10.1126/science.472759. [DOI] [PubMed] [Google Scholar]
  19. Niedel J., Wilkinson S., Cuatrecasas P. Receptor-mediated uptake and degradation of 125I-chemotactic peptide by human neutrophils. J Biol Chem. 1979 Nov 10;254(21):10700–10706. [PubMed] [Google Scholar]
  20. O'Flaherty J. T., Craddock P. R., Jacob H. S. Effect of intravascular complement activation on granulocyte adhesiveness and distribution. Blood. 1978 Apr;51(4):731–739. [PubMed] [Google Scholar]
  21. O'Flaherty J. T., Kreutzer D. L., Showell H. J., Vitkauskas G., Becker E. L., Ward P. A. Selective neutrophil desensitization to chemotactic factors. J Cell Biol. 1979 Mar;80(3):564–572. doi: 10.1083/jcb.80.3.564. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Rubinger D., Friedlaender M. M., Popovtzer M. M. Amelioration of familial Mediterranean fever during hemodialysis. N Engl J Med. 1979 Jul 19;301(3):142–144. doi: 10.1056/NEJM197907193010306. [DOI] [PubMed] [Google Scholar]
  23. Sacks T., Moldow C. F., Craddock P. R., Bowers T. K., Jacob H. S. Oxygen radicals mediate endothelial cell damage by complement-stimulated granulocytes. An in vitro model of immune vascular damage. J Clin Invest. 1978 May;61(5):1161–1167. doi: 10.1172/JCI109031. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Stagno S., Volanakis J. E., Reynolds D. W., Stroud R., Alford C. A. Immune complexes in congenital and natal cytomegalovirus infections of man. J Clin Invest. 1977 Oct;60(4):838–845. doi: 10.1172/JCI108838. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. Sullivan S. J., Zigmond S. H. Chemotactic peptide receptor modulation in polymorphonuclear leukocytes. J Cell Biol. 1980 Jun;85(3):703–711. doi: 10.1083/jcb.85.3.703. [DOI] [PMC free article] [PubMed] [Google Scholar]
  26. Toren M., Goffinet J. A., Kaplow L. S. Pulmonary bed sequestration of neutrophils during hemodialysis. Blood. 1970 Sep;36(3):337–340. [PubMed] [Google Scholar]
  27. Ward P. A., Becker E. L. The deactivation of rabbit neutrophils by chemotactic factor and the nature of the activatable esterase. J Exp Med. 1968 Apr 1;127(4):693–709. doi: 10.1084/jem.127.4.693. [DOI] [PMC free article] [PubMed] [Google Scholar]
  28. Williams L. T., Snyderman R., Pike M. C., Lefkowitz R. J. Specific receptor sites for chemotactic peptides on human polymorphonuclear leukocytes. Proc Natl Acad Sci U S A. 1977 Mar;74(3):1204–1208. doi: 10.1073/pnas.74.3.1204. [DOI] [PMC free article] [PubMed] [Google Scholar]
  29. Zigmond S. H., Hirsch J. G. Leukocyte locomotion and chemotaxis. New methods for evaluation, and demonstration of a cell-derived chemotactic factor. J Exp Med. 1973 Feb 1;137(2):387–410. doi: 10.1084/jem.137.2.387. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Journal of Clinical Investigation are provided here courtesy of American Society for Clinical Investigation

RESOURCES