Skip to main content
The Journal of Clinical Investigation logoLink to The Journal of Clinical Investigation
. 1981 Jun;67(6):1703–1711. doi: 10.1172/JCI110208

Selectivity of Dobutamine for Adrenergic Receptor Subtypes

IN VITRO ANALYSIS BY RADIOLIGAND BINDING

R Sanders Williams 1,2, Timothy Bishop 1,2
PMCID: PMC370747  PMID: 6263950

Abstract

The cardiovascular responses elicited by dobutamine are distinctly different from those produced by other adrenergic or dopaminergic agonists. To test the hypothesis that dobutamine could have differential affinities for adrenergic receptor subtypes, and that such subtype selectivity could be related to its relatively unique pharmacologic properties, we assessed the ability of dobutamine to displace adrenergic radioligands from membrane receptors in a number of tissues of previously characterized adrenergic receptor subtype. For beta adrenergic receptors identified by (−) [3H]dihydroalprenolol (DHA), dobutamine had significantly greater affinity for the β1 subtype (KD = 2.5 μM in rat heart and 2.6 μM in turkey erythrocyte) than for the β2 subtype (KD = 14.8 μM in frog heart and 25.4 μM in rat lung) (P < 0.001). For alpha adrenergic receptors, dobutamine had markedly greater affinity for the α1-subtype identified by [3H]prazosin (KD = 0.09 μM in rat heart and 0.14 μM in rabbit uterus) than for the α2-subtype identified by [3H]dihydroergocryptine (DHE) (KD = 9.3 μM in human platelet) or by [3H]yohimbine (KD = 5.7 μM in rabbit uterus) (P < 0.001).

Like other β1-agonists, in the absence of guanine nucleotide, dobutamine competition curves for DHA binding in rat heart demonstrated two classes of binding sites, with one site of significantly higher affinity (KD = 0.5 μM, P = 0.008) than the single class of binding sites (KD = 5.2 μM) identified in the presence of guanine nucleotide. However, unlike β2- or α2-agonists, dobutamine displacement of DHA binding in rat lung or of DHE binding in human platelets demonstrated only a single class of binding sites, and guanine nucleotide had only minimal effects.

We conclude that dobutamine is selective for β1 as opposed to β2, and for α1 as opposed to α2 adrenergic receptors. Furthermore, guanine nucleotide effects on dobutamine binding, and biochemical response data in vitro suggest that dobutamine is a β1-agonist, but has little intrinsic activity at β2 and α2-receptors. This selectivity for adrenergic receptor subtypes may be part of the basis for dobutamine's distinctive pharmacologic properties in vivo.

Full text

PDF
1703

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Ablad B., Borg K. O., Carlsson E., EK L., Johnson G., Malmfors T., Regårdh C. G. A survey of the pharmacological properties of metoprolol in animals and man. Acta Pharmacol Toxicol (Copenh) 1975;36(Suppl 5):7–23. doi: 10.1111/j.1600-0773.1975.tb03318.x. [DOI] [PubMed] [Google Scholar]
  2. Atlas D., Steer M. L., Levitzki A. Stereospecific binding of propranolol and catecholamines to the beta-adrenergic receptor. Proc Natl Acad Sci U S A. 1974 Oct;71(10):4246–4248. doi: 10.1073/pnas.71.10.4246. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Berthelsen S., Pettinger W. A. A functional basis for classification of alpha-adrenergic receptors. Life Sci. 1977 Sep 1;21(5):595–606. doi: 10.1016/0024-3205(77)90066-2. [DOI] [PubMed] [Google Scholar]
  4. Brittain R. T., Jack D., Ritchie A. C. Recent beta-adrenoreceptor stimulants. Adv Drug Res. 1970;5:197–253. [PubMed] [Google Scholar]
  5. Brown E. M., Fedak S. A., Woodard C. J., Aurbach G. D. Beta-Adrenergic receptor interactions. Direct comparison of receptor interaction and biological activity. J Biol Chem. 1976 Mar 10;251(5):1239–1246. [PubMed] [Google Scholar]
  6. Carlsson E., Dahlöf C. G., Hedberg A., Persson H., Tångstrand B. Differentiation of cardiac chronotropic and inotropic effects of beta-adrenoceptor agonists. Naunyn Schmiedebergs Arch Pharmacol. 1977 Nov;300(2):101–105. doi: 10.1007/BF00505039. [DOI] [PubMed] [Google Scholar]
  7. Farmer J. B., Levy G. P., Marshall R. J. A comparison of the beta-adrenoceptor stimulant properties of salbutamol, orciprenaline and soterenol with those of isoprenaline. J Pharm Pharmacol. 1970 Dec;22(12):945–947. doi: 10.1111/j.2042-7158.1970.tb08481.x. [DOI] [PubMed] [Google Scholar]
  8. Furnival C. M., Linden R. J., Snow H. M. The inotropic and chronotropic effects of catecholamines on the dog heart. J Physiol. 1971 Apr;214(1):15–28. doi: 10.1113/jphysiol.1971.sp009416. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Govier W. C., Mosal N. C., Whittington P., Broom A. H. Myocardial alpha and beta adrenergic receptors as demonstrated by atrial functional refractory-period changes. J Pharmacol Exp Ther. 1966 Nov;154(2):255–263. [PubMed] [Google Scholar]
  10. Hancock A. A., DeLean A. L., Lefkowitz R. J. Quantitative resolution of beta-adrenergic receptor subtypes by selective ligand binding: application of a computerized model fitting technique. Mol Pharmacol. 1979 Jul;16(1):1–9. [PubMed] [Google Scholar]
  11. Hegstrand L. R., Minneman K. P., Molinoff P. B. Multiple effects of guanosine triphosphate on beta adrenergic receptors and adenylate cyclase activity in rat heart, lung and brain. J Pharmacol Exp Ther. 1979 Aug;210(2):215–221. [PubMed] [Google Scholar]
  12. Hoffman B. B., De Lean A., Wood C. L., Schocken D. D., Lefkowitz R. J. Alpha-adrenergic receptor subtypes: quantitative assessment by ligand binding. Life Sci. 1979 May 7;24(19):1739–1745. doi: 10.1016/0024-3205(79)90061-4. [DOI] [PubMed] [Google Scholar]
  13. Hoffman B. B., Lefkowitz R. J. Alpha-adrenergic receptor subtypes. N Engl J Med. 1980 Jun 19;302(25):1390–1396. doi: 10.1056/NEJM198006193022504. [DOI] [PubMed] [Google Scholar]
  14. Hoffman B. B., Mullikin-Kilpatrick D., Lefkowitz R. J. Desensitization of beta-adrenergic stimulated adenylate cyclase in turkey erythrocytes. J Cyclic Nucleotide Res. 1979 Oct;5(5):355–366. [PubMed] [Google Scholar]
  15. Hoffman B. B., Mullikin-Kilpatrick D., Lefkowitz R. J. Heterogeneity of radioligand binding to alpha-adrenergic receptors. Analysis of guanine nucleotide regulation of agonist binding in relation to receptor subtypes. J Biol Chem. 1980 May 25;255(10):4645–4652. [PubMed] [Google Scholar]
  16. Kent R. S., De Lean A., Lefkowitz R. J. A quantitative analysis of beta-adrenergic receptor interactions: resolution of high and low affinity states of the receptor by computer modeling of ligand binding data. Mol Pharmacol. 1980 Jan;17(1):14–23. [PubMed] [Google Scholar]
  17. LOWRY O. H., ROSEBROUGH N. J., FARR A. L., RANDALL R. J. Protein measurement with the Folin phenol reagent. J Biol Chem. 1951 Nov;193(1):265–275. [PubMed] [Google Scholar]
  18. Lands A. M., Arnold A., McAuliff J. P., Luduena F. P., Brown T. G., Jr Differentiation of receptor systems activated by sympathomimetic amines. Nature. 1967 May 6;214(5088):597–598. doi: 10.1038/214597a0. [DOI] [PubMed] [Google Scholar]
  19. Lefkowitz R. J., Mullikin D., Caron M. G. Regulation of beta-adrenergic receptors by guanyl-5'-yl imidodiphosphate and other purine nucleotides. J Biol Chem. 1976 Aug 10;251(15):4686–4692. [PubMed] [Google Scholar]
  20. Leier C. V., Heban P. T., Huss P., Bush C. A., Lewis R. P. Comparative systemic and regional hemodynamic effects of dopamine and dobutamine in patients with cardiomyopathic heart failure. Circulation. 1978 Sep;58(3 Pt 1):466–475. doi: 10.1161/01.cir.58.3.466. [DOI] [PubMed] [Google Scholar]
  21. Lumley P., Broadley K. J., Levy G. P. Analysis of the inotropic: chronotropic selectivity of dobutamine and dopamine in anaethetised dogs and guinea-pig isolated atria. Cardiovasc Res. 1977 Jan;11(1):17–25. doi: 10.1093/cvr/11.1.17. [DOI] [PubMed] [Google Scholar]
  22. Mary-Rabine L., Hordof A. J., Bowman F. O., Malm J. R., Rosen M. R. Alpha and beta adrenergic effects on human atrial specialized conducting fibers. Circulation. 1978 Jan;57(1):84–90. doi: 10.1161/01.cir.57.1.84. [DOI] [PubMed] [Google Scholar]
  23. Minneman K. P., Hedberg A., Molinoff P. B. Comparison of beta adrenergic receptor subtypes in mammalian tissues. J Pharmacol Exp Ther. 1979 Dec;211(3):502–508. [PubMed] [Google Scholar]
  24. Minneman K. P., Hegstrand L. R., Molinoff P. B. The pharmacological specificity of beta-1 and beta-2 adrenergic receptors in rat heart and lung in vitro. Mol Pharmacol. 1979 Jul;16(1):21–33. [PubMed] [Google Scholar]
  25. Mukherjee C., Caron M. G., Coverstone M., Lefkowitz R. J. Identification of adenylate cyclase-coupled beta-adrenergic receptors in frog erythrocytes with (minus)-[3-H] alprenolol. J Biol Chem. 1975 Jul 10;250(13):4869–4876. [PubMed] [Google Scholar]
  26. Newman K. D., Williams L. T., Bishopric N. H., Lefkowitz R. J. Identification of alpha-adrenergic receptors in human platelets by [3H]dihydroergocryptine binding. J Clin Invest. 1978 Feb;61(2):395–402. doi: 10.1172/JCI108950. [DOI] [PMC free article] [PubMed] [Google Scholar]
  27. Pike L. J., Lefkowitz R. J. Activation and desensitization of beta-adrenergic receptor-coupled GTPase and adenylate cyclase of frog and turkey erythrocyte membranes. J Biol Chem. 1980 Jul 25;255(14):6860–6867. [PubMed] [Google Scholar]
  28. Rabinowitz B., Chuck L., Kligerman M., Parmley W. W. Positive inotropic effects of methoxamine: evidence for alpha-adrenergic receptors in ventricular myocardium. Am J Physiol. 1975 Sep;229(3):582–585. doi: 10.1152/ajplegacy.1975.229.3.582. [DOI] [PubMed] [Google Scholar]
  29. Robie N. W., Nutter D. O., Moody C., McNay J. L. In vivo analysis of adrenergic receptor activity of dobutamine. Circ Res. 1974 May;34(5):663–671. doi: 10.1161/01.res.34.5.663. [DOI] [PubMed] [Google Scholar]
  30. Sonnenblick E. H., Frishman W. H., LeJemtel T. H. Dobutamine: a new synthetic cardioactive sympathetic amine. N Engl J Med. 1979 Jan 4;300(1):17–22. doi: 10.1056/NEJM197901043000105. [DOI] [PubMed] [Google Scholar]
  31. Stadel J. M., DeLean A., Lefkowitz R. J. A high affinity agonist . beta-adrenergic receptor complex is an intermediate for catecholamine stimulation of adenylate cyclase in turkey and frog erythrocyte membranes. J Biol Chem. 1980 Feb 25;255(4):1436–1441. [PubMed] [Google Scholar]
  32. Stephens J., Ead H., Spurrell R. Haemodynamic effects of dobutamine with special reference to myocardial blood flow. A comparison with dopamine and isoprenaline. Br Heart J. 1979 Jul;42(1):43–50. doi: 10.1136/hrt.42.1.43. [DOI] [PMC free article] [PubMed] [Google Scholar]
  33. Tsai B. S., Lefkowitz R. J. Agonist-specific effects of guanine nucleotides on alpha-adrenergic receptors in human platelets. Mol Pharmacol. 1979 Jul;16(1):61–68. [PubMed] [Google Scholar]
  34. Tuttle R. R., Hillmann C. C., Toomey R. E. Differential beta adrenergic sensitivity of atrial and ventricular tissue assessed by chronotropic, inotropic, and cyclic AMP responses to isoprenaline and dobutamine. Cardiovasc Res. 1976 Jul;10(4):452–458. doi: 10.1093/cvr/10.4.452. [DOI] [PubMed] [Google Scholar]
  35. Tuttle R. R., Mills J. Dobutamine: development of a new catecholamine to selectively increase cardiac contractility. Circ Res. 1975 Jan;36(1):185–196. doi: 10.1161/01.res.36.1.185. [DOI] [PubMed] [Google Scholar]
  36. U'Prichard D. C., Bylund D. B., Snyder S. H. (+/-)-[3H]Epinephrine and (-)[3H]dihydroalprenolol binding to beta1- and beta2-noradrenergic receptors in brain, heart, and lung membranes. J Biol Chem. 1978 Jul 25;253(14):5090–5102. [PubMed] [Google Scholar]
  37. Vatner S. F., McRitchie R. J., Braunwald E. Effects of dobutamine on left ventricular performance, coronary dynamics, and distribution of cardiac output in conscious dogs. J Clin Invest. 1974 May;53(5):1265–1273. doi: 10.1172/JCI107673. [DOI] [PMC free article] [PubMed] [Google Scholar]
  38. Williams L. T., Mullikin D., Lefkowitz R. J. Identification of alpha-adrenergic receptors in uterine smooth muscle membranes by [3H]dihydroergocryptine binding. J Biol Chem. 1976 Nov 25;251(22):6915–6923. [PubMed] [Google Scholar]
  39. Williams R. S., Lefkowitz R. J. Alpha-adrenergic receptors in rat myocardium. Identification by binding of [3H]dihydroergocryptine. Circ Res. 1978 Nov;43(5):721–727. doi: 10.1161/01.res.43.5.721. [DOI] [PubMed] [Google Scholar]
  40. Wood C. L., Arnett C. D., Clarke W. R., Tsai B. S., Lefkowitz R. J. Subclassification of alpha-adrenergic receptors by direct binding studies. Biochem Pharmacol. 1979 Apr 15;28(8):1277–1282. doi: 10.1016/0006-2952(79)90424-6. [DOI] [PubMed] [Google Scholar]

Articles from Journal of Clinical Investigation are provided here courtesy of American Society for Clinical Investigation

RESOURCES