Skip to main content
The Journal of Clinical Investigation logoLink to The Journal of Clinical Investigation
. 1981 Jun;67(6):1785–1791. doi: 10.1172/JCI110218

Triiodothyronine-induced Thyrotoxicosis Increases Mononuclear Leukocyte β-Adrenergic Receptor Density in Man

Ann M Ginsberg 1, William E Clutter 1, Suresh D Shah 1, Philip E Cryer 1
PMCID: PMC370757  PMID: 6263953

Abstract

β-Adrenergic receptors are increased in some tissues of experimentally thyrotoxic animals but are reported to be unchanged in mononuclear leukocytes of spontaneously thyrotoxic humans. We examined the effects of triiodothyronine (100 μg/d for 7 d) and placebo on high-affinity mononuclear leukocyte β-adrenergic receptors in 24 normal human subjects, using a double-blind design. β-Adrenergic receptors were assessed by specific binding of the antagonist (-)[3H]dihydroalprenolol. Triiodothyronine administration resulted in objective evidence of moderate thyrotoxicosis and an increase in mean (-)[3H]dihydroalprenolol binding from 25±3 to 57±9 fmol/mg protein (P < 0.001). The latter was attributable, by Scatchard analysis, to an increase in β-adrenergic receptor density (967 ± 134 to 2250 ± 387 sites per cell, P < 0.01); apparent dissociation constants did not change. Placebo administration had no effects. Marked inter- and intraindividual variation in mononuclear leukocyte β-adrenergic receptor density was also noted. Because this was approximately threefold greater than analytical variation, it is largely attributable to biologic variation. Thus, we conclude: (a) The finding of a triiodothyronine-induced increase in mononuclear leukocyte β-adrenergic receptor density in human mononuclear leukocytes, coupled with similar findings in tissues of experimentally thyrotoxic animals, provides support for the use of mononuclear leukocytes to assess receptor status in man. (b) There is considerable biologic variation in β-adrenergic receptor density in man. (c) The findings of thyroid hormone-induced increments in β-adrenergic receptor density provide a plausible mechanism for the putative enhanced responsiveness to endogenous catecholamines of patients with thyrotoxicosis.

Full text

PDF
1785

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Aoki V. S., Wilson W. R., Theilen E. O. Studies of the reputed augmentation of the cardiovascular effects of catecholamines in patients with spontaneous hyperthyroidism. J Pharmacol Exp Ther. 1972 May;181(2):362–368. [PubMed] [Google Scholar]
  2. Bayliss R. I., Edwards O. M. Urinary excretion of free catecholamines in Graves' disease. J Endocrinol. 1971 Jan;49(1):167–173. doi: 10.1677/joe.0.0490167. [DOI] [PubMed] [Google Scholar]
  3. Bilezikian J. P., Loeb J. N., Gammon D. E. The influence of hyperthyroidism and hypothyroidism on the beta-adrenergic responsiveness of the turkey erythrocyte. J Clin Invest. 1979 Feb;63(2):184–192. doi: 10.1172/JCI109288. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Bishopric N. H., Cohen H. J., Lefkowitz R. J. Beta adrenergic receptors in lymphocyte subpopulations. J Allergy Clin Immunol. 1980 Jan;65(1):29–33. doi: 10.1016/0091-6749(80)90173-6. [DOI] [PubMed] [Google Scholar]
  5. Bégin-Heick N., Heick H. M. Increased response of adipose tissue of the ob/ob mouse to the action of adrenaline after treatment with thyroxin. Can J Physiol Pharmacol. 1977 Dec;55(6):1320–1329. doi: 10.1139/y77-177. [DOI] [PubMed] [Google Scholar]
  6. Christensen N. J. Plasma noradrenaline and adrenaline in patients with thyrotoxicosis and myxoedema. Clin Sci Mol Med. 1973 Aug;45(2):163–171. doi: 10.1042/cs0450163. [DOI] [PubMed] [Google Scholar]
  7. Ciaraldi T. P., Marinetti G. V. Hormone action at the membrane level. VIII. Adrenergic receptors in rat heart and adipocytes and their modulation by thyroxine. Biochim Biophys Acta. 1978 Jul 3;541(3):334–346. doi: 10.1016/0304-4165(78)90193-9. [DOI] [PubMed] [Google Scholar]
  8. Ciaraldi T., Marinetti G. V. Thyroxine and propylthiouracil effects of vivo on alpha and beta adrenergic receptors in rat heart. Biochem Biophys Res Commun. 1977 Feb 7;74(3):984–991. doi: 10.1016/0006-291x(77)91615-1. [DOI] [PubMed] [Google Scholar]
  9. Coulombe P., Dussault J. H., Letarte J., Simmard S. J. Catecholamines metabolism in thyroid diseases. I. Epinephrine secretion rate in hyperthyroidism and hypothyroidism. J Clin Endocrinol Metab. 1976 Jan;42(1):125–131. doi: 10.1210/jcem-42-1-125. [DOI] [PubMed] [Google Scholar]
  10. Coulombe P., Dussault J. H., Walker P. Catecholamine metabolism in thyroid disease. II. Norepinephrine secretion rate in hyperthyroidism and hypothyroidism. J Clin Endocrinol Metab. 1977 Jun;44(6):1185–1189. doi: 10.1210/jcem-44-6-1185. [DOI] [PubMed] [Google Scholar]
  11. Coulombe P., Dussault J. H., Walker P. Plasma catecholamine concentrations in hyperthyroidism and hypothyroidism. Metabolism. 1976 Sep;25(9):973–979. doi: 10.1016/0026-0495(76)90126-8. [DOI] [PubMed] [Google Scholar]
  12. Cryer P. E., Santiago J. V., Shah S. Measurement of norepinephrine and epinephrine in small volumes of human plasma by a single isotope derivative method: response to the upright posture. J Clin Endocrinol Metab. 1974 Dec;39(6):1025–1029. doi: 10.1210/jcem-39-6-1025. [DOI] [PubMed] [Google Scholar]
  13. Cryer P. E., Silverberg A. B., Santiago J. V., Shah S. D. Plasma catecholamines in diabetes. The syndromes of hypoadrenergic and hyperadrenergic postural hypotension. Am J Med. 1978 Mar;64(3):407–416. doi: 10.1016/0002-9343(78)90220-6. [DOI] [PubMed] [Google Scholar]
  14. Davies A. O., Lefkowitz R. J. Corticosteroid-induced differential regulation of beta-adrenergic receptors in circulating human polymorphonuclear leukocytes and mononuclear leukocytes. J Clin Endocrinol Metab. 1980 Sep;51(3):599–605. doi: 10.1210/jcem-51-3-599. [DOI] [PubMed] [Google Scholar]
  15. Guarnieri T., Filburn C. R., Beard E. S., Lakatta E. G. Enhanced contractile response and protein kinase activation to threshold levels of beta-adrenergic stimulation in hyperthyroid rat heart. J Clin Invest. 1980 Apr;65(4):861–868. doi: 10.1172/JCI109738. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Guttler R. B., Shaw J. W., Otis C. L., Nicologg J. T. Epinephrine-induced alterations in urinary cyclic AMP in hyper- and hypothyroidism. J Clin Endocrinol Metab. 1975 Oct;41(4):707–711. doi: 10.1210/jcem-41-4-707. [DOI] [PubMed] [Google Scholar]
  17. Hollander C. S., Mitsuma T., Nihei N., Shenkman L., Burday S. Z., Blum M. Clinical and laboratory observations in cases of triiodothyronine toxicosis confirmed by radioimmunoassay. Lancet. 1972 Mar 18;1(7751):609–611. doi: 10.1016/s0140-6736(72)90408-4. [DOI] [PubMed] [Google Scholar]
  18. Kempson S., Marinetti G. V., Shaw A. Hormone action at the membrane level. VII. Stimulation of dihydroalprenolol binding to beta-adrenergic receptors in isolated rat heart ventricle slices by triiodothyronine and thyroxine. Biochim Biophys Acta. 1978 May 3;540(2):320–329. doi: 10.1016/0304-4165(78)90145-9. [DOI] [PubMed] [Google Scholar]
  19. Levey G. S., Skelton C. L., Epstein S. E. Influence of hyperthyroidism on the effects of norepinephrine on myocardial adenyl cyclase activity and contractile state. Endocrinology. 1969 Dec;85(6):1004–1009. doi: 10.1210/endo-85-6-1004. [DOI] [PubMed] [Google Scholar]
  20. Longhurst P. A., McNeill J. H. Effect of isoproterenol on phosphorylase activation in the hyperthyroid rat heart. Can J Physiol Pharmacol. 1979 Jun;57(6):567–573. doi: 10.1139/y79-086. [DOI] [PubMed] [Google Scholar]
  21. MURRAY J. F., KELLY J. J., Jr The relation of thyroidal homone level to epinephrine response: a diagnostic test for hyperthyroidism. Ann Intern Med. 1959 Aug;51:309–321. doi: 10.7326/0003-4819-51-2-309. [DOI] [PubMed] [Google Scholar]
  22. Malbon C. C., Moreno F. J., Cabelli R. J., Fain J. N. Fat cell adenylate cyclase and beta-adrenergic receptors in altered thyroid states. J Biol Chem. 1978 Feb 10;253(3):671–678. [PubMed] [Google Scholar]
  23. Margolius H. S., Gaffney T. E. The effects of injected norepinephrine and sympathetic nerve stimulation in hypothyroid and hyperthyroid dogs. J Pharmacol Exp Ther. 1965 Sep;149(3):329–335. [PubMed] [Google Scholar]
  24. Rutherford J. D., Vatner S. F., Braunwald E. Adrenergic control of myocardial contractility in conscious hyperthyroid dogs. Am J Physiol. 1979 Nov;237(5):H590–H596. doi: 10.1152/ajpheart.1979.237.5.H590. [DOI] [PubMed] [Google Scholar]
  25. SCHNECKLOTH R. E., KURLAND G. S., FREEDBERG A. S. Effect of variation in thyroid function on the pressor response to norepinephrine in man. Metabolism. 1953 Nov;2(6):546–555. [PubMed] [Google Scholar]
  26. Seino Y., Miyamoto Y., Moridera K., Taminato T., Matsukura S., Imura H. The role of the beta-adrenergic mechanism in the hypergastrinemia of hyperthyroidism. J Clin Endocrinol Metab. 1980 Feb;50(2):368–370. doi: 10.1210/jcem-50-2-368. [DOI] [PubMed] [Google Scholar]
  27. Steele R. E., Wekstein D. R. Effects of throxine on calorigenic response of the newborn rat to norepinephrine. Am J Physiol. 1973 Apr;224(4):979–984. doi: 10.1152/ajplegacy.1973.224.4.979. [DOI] [PubMed] [Google Scholar]
  28. Sterling K., Refetoff S., Selenkow H. A. T3 thyrotoxicosis. Thyrotoxicosis due to elevated serum triiodothyronine levels. JAMA. 1970 Jul 27;213(4):571–575. doi: 10.1001/jama.213.4.571. [DOI] [PubMed] [Google Scholar]
  29. Tohmeh J. F., Cryer P. E. Biphasic adrenergic modulation of beta-adrenergic receptors in man. Agonist-induced early increment and late decrement in beta-adrenergic receptor number. J Clin Invest. 1980 Apr;65(4):836–840. doi: 10.1172/JCI109735. [DOI] [PMC free article] [PubMed] [Google Scholar]
  30. Tsai J. S., Chen A. Effect of L-triiodothyronine on (--)3H-dihydroalprenolol binding and cyclic AMP response to (--)adrenaline in cultured heart cells. Nature. 1978 Sep 14;275(5676):138–140. doi: 10.1038/275138a0. [DOI] [PubMed] [Google Scholar]
  31. Wildenthal K. Studies of isolated fetal mouse hearts in organ culture. Evidence for a direct effect of triiodothyronine in enhancing cardiac responsiveness to norepinephrine. J Clin Invest. 1972 Oct;51(10):2702–2709. doi: 10.1172/JCI107089. [DOI] [PMC free article] [PubMed] [Google Scholar]
  32. Williams L. T., Lefkowitz R. J., Watanabe A. M., Hathaway D. R., Besch H. R., Jr Thyroid hormone regulation of beta-adrenergic receptor number. J Biol Chem. 1977 Apr 25;252(8):2787–2789. [PubMed] [Google Scholar]
  33. Williams L. T., Snyderman R., Lefkowitz R. J. Identification of beta-adrenergic receptors in human lymphocytes by (-) (3H) alprenolol binding. J Clin Invest. 1976 Jan;57(1):149–155. doi: 10.1172/JCI108254. [DOI] [PMC free article] [PubMed] [Google Scholar]
  34. Williams R. S., Guthrow C. E., Lefkowitz R. J. Beta-Adrenergic receptors of human lymphocytes are unaltered by hyperthyroidism. J Clin Endocrinol Metab. 1979 Mar;48(3):503–505. doi: 10.1210/jcem-48-3-503. [DOI] [PubMed] [Google Scholar]
  35. Winek R., Bhalla R. [3H]Dihydroalprenolol binding sites in rat myocardium: relationship between a single binding site population and the concentration of radioligand. Biochem Biophys Res Commun. 1979 Nov 14;91(1):200–206. doi: 10.1016/0006-291x(79)90603-x. [DOI] [PubMed] [Google Scholar]
  36. van der Schoot J. B., Moran N. C. An experimental evaluation of the reputed influence of thyroxine on the cardiovascular effects of catecholamines. J Pharmacol Exp Ther. 1965 Sep;149(3):336–345. [PubMed] [Google Scholar]

Articles from Journal of Clinical Investigation are provided here courtesy of American Society for Clinical Investigation

RESOURCES