Skip to main content
The Journal of Clinical Investigation logoLink to The Journal of Clinical Investigation
. 1981 Jun;67(6):1792–1796. doi: 10.1172/JCI110219

Role of the endogenous kallikrein-kinin system in modulating vasopressin-stimulated water flow and urea permeability in the toad urinary bladder.

C P Carvounis, G Carvounis, L A Arbeit
PMCID: PMC370758  PMID: 6165739

Abstract

This study investigates the endogenous kallikrein-kinin system's role as a modulator of vasopressin action in the toad urinary bladder. Kalli-krein inhibition by aprotinin, which results in decreased kinin production, significantly increased both vasopressin and 8-Br-cyclic (c) AMP-stimulated water flow. Kinin potentiation by the kininase II inhibitor captopril (SQ 14225) significantly decreased vasopressin and 8-Br-cAMP-stimulated water flow. In contrast to water flow, vasopressin-stimulated urea permeability was decreased by aprotinin and increased by captopril. We conclude that the endogenous kallikrein-kinin system represents a significant modulator of vasopressin action and it permits separate control of vasopressin-stimulated water flow and solute transport.

Full text

PDF
1792

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Adetuyibi A., Mills I. H. Relation between urinary kallikrein and renal function, hypertension, and excretion of sodium and water in man. Lancet. 1972 Jul 29;2(7770):203–207. doi: 10.1016/s0140-6736(72)91636-4. [DOI] [PubMed] [Google Scholar]
  2. BENTLEY P. J. The effects of neurohypophysial extracts on the water transfer across the wall of the isolated urinary bladder of the toad Bufo marinus. J Endocrinol. 1958 Sep;17(3):201–209. doi: 10.1677/joe.0.0170201. [DOI] [PubMed] [Google Scholar]
  3. Carvounis C. P., Franki N., Levine S. D., Hays R. M. Membrane pathways for water and solutes in the toad bladder: I. Independent activation of water and urea transport. J Membr Biol. 1979 Sep;49(3):253–268. doi: 10.1007/BF01871121. [DOI] [PubMed] [Google Scholar]
  4. Carvounis C. P., Levine S. D., Franki N., Hays R. M. Membrane pathways for water and solutes in the toad bladder: II. Reflection coefficients of the water and solute channels. J Membr Biol. 1979 Sep;49(3):269–281. doi: 10.1007/BF01871122. [DOI] [PubMed] [Google Scholar]
  5. Carvounis C. P., Levine S. D., Hays R. M. pH-Dependence of water and solute transport in toad urinary bladder. Kidney Int. 1979 May;15(5):513–519. doi: 10.1038/ki.1979.66. [DOI] [PubMed] [Google Scholar]
  6. Chao J., Margolius H. S. Studies on rat renal cortical cell kallikrein. II. Identification of kallikrein as an ecto-enzyme. Biochim Biophys Acta. 1979 Oct 11;570(2):330–340. doi: 10.1016/0005-2744(79)90153-0. [DOI] [PubMed] [Google Scholar]
  7. Fejes-Tóth G., Zahajszky T., Filep J. Effect of vasopressin on renal kallikrein excretion. Am J Physiol. 1980 Oct;239(4):F388–F392. doi: 10.1152/ajprenal.1980.239.4.F388. [DOI] [PubMed] [Google Scholar]
  8. Furtado M. R. Occurrence of a kinin-like peptide in the urinary bladder of the toad Bufo marimus paracnemis Lutz. Biochem Pharmacol. 1972 Jan;21(1):118–124. doi: 10.1016/0006-2952(72)90258-4. [DOI] [PubMed] [Google Scholar]
  9. Handler J. S., Preston A. S., Orloff J. Effect of adrenal steroid hormones on the response of the toad's urinary bladder to vasopressin. J Clin Invest. 1969 May;48(5):823–833. doi: 10.1172/JCI106040. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. MAFFLY R. H., HAYS R. M., LAMDIN E., LEAF A. The effect of neurohypophyseal hormones on the permeability of the toad bladder to urea. J Clin Invest. 1960 Apr;39:630–641. doi: 10.1172/JCI104078. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Margolius H. S., Chao J. Amiloride inhibits mammalian renal kallikrein and a kallikrein-like enzyme from toad bladder and skin. J Clin Invest. 1980 Jun;65(6):1343–1350. doi: 10.1172/JCI109798. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Ondetti M. A., Rubin B., Cushman D. W. Design of specific inhibitors of angiotensin-converting enzyme: new class of orally active antihypertensive agents. Science. 1977 Apr 22;196(4288):441–444. doi: 10.1126/science.191908. [DOI] [PubMed] [Google Scholar]
  13. Orce G. G., Castillo G. A., Margolius H. S. Inhibition of short-circuit current in toad urinary bladder by inhibitors of glandular kallikrein. Am J Physiol. 1980 Nov;239(5):F459–F465. doi: 10.1152/ajprenal.1980.239.5.F459. [DOI] [PubMed] [Google Scholar]
  14. Orstabik T. B., Nustad K., Brandtzaeg P., Pierce J. V. Cellular origin of urinary kallikreins. J Histochem Cytochem. 1976 Sep;24(9):1037–1039. doi: 10.1177/24.9.965714. [DOI] [PubMed] [Google Scholar]
  15. WEBSTER M. E., GILMORE J. P. INFLUENCE OF KALLIDIN-L0 ON RENAL FUNCTION. Am J Physiol. 1964 Apr;206:714–718. doi: 10.1152/ajplegacy.1964.206.4.714. [DOI] [PubMed] [Google Scholar]
  16. Zusman R. M., Keiser H. R., Handler J. S. Vasopressin-stimulated prostaglandin E biosynthesis in the toad urinary bladder. Effect of water flow. J Clin Invest. 1977 Dec;60(6):1339–1347. doi: 10.1172/JCI108893. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Journal of Clinical Investigation are provided here courtesy of American Society for Clinical Investigation

RESOURCES