Abstract
To clarify conflicting reports concerning the effects of ischemia on left ventricular chamber stiffness, we compared the effects of hypoxia at constant coronary perfusion with those of global ischemia on left ventricular diastolic chamber stiffness using isolated, perfused rabbit hearts in which the left ventricle was contracting isovolumically. Since chamber volume was held constant, increases in left ventricular end diastolic pressure (LVEDP) reflected increases in chamber stiffness. At a control coronary flow rate (30 ml/min), 2 min of hypoxia and pacing tachycardia (4.0 Hz) produced major increases in postpacing LVEDP (10±1 to 24±3 mm Hg, P < 0.01) and the relaxation time constant, T, (40±4 to 224±37 ms, P < 0.001), while percent lactate extraction ratio became negative (+ 18±2 to −48±15%, P < 0.001). Coronary perfusion pressure decreased (72±5 to 52±3 mm Hg, P < 0.01), and since coronary flow was held constant, the fall in coronary perfusion pressure reflected coronary dilation and a decrease in coronary vascular resistance. Following an average of 71±6s reoxygenation and initial heart rate (2.0 Hz), LVEDP and relaxation time constant T returned to control. Hypoxia alone (without pacing tachycardia) produced similar although less marked changes (LVEDP, 10±1 to 20±3 mm Hg; and T, 32±3 to 119±22 ms; P < 0.01 for both) and there was a strong correlation between LVEDP and T (r = 0.82, P < 0.001).
When a similar degree of coronary vasodilatation was induced with adenosine, no change in LVEDP occurred, indicating that the increase in end diastolic pressure observed during hypoxia was not secondary to vascular engorgement, but due to an acute effect of hypoxia on the diastolic behavior of the ventricular myocardium.
In contrast, global ischemia produced by low coronary flow (12−15 ml/min) resulted in a decrease in LVEDP, as well as a marked fall in left ventricular systolic pressure. In 14 global ischemia experiments, pacing tachycardia led to a further decline in left ventricular systolic pressure, and no increase was noted in postpacing LVEDP. Changes in lactate extraction ratio were much smaller in magnitude than with hypoxia and constant coronary perfusion. In two experiments (one at normal coronary flow and one at 15 ml/min), left ventricular systolic pressure did not change markedly from control when tachycardia was superimposed, and postpacing LVEDP showed a marked rise (to > 25 mm Hg), which gradually recovered over 1−2 min at the control heart rate.
From these results, we conclude that left ventricular chamber stiffness increases when myocardial O2 demand exceeds supply. This change is usually masked in ischemic (reduced coronary flow) preparations, perhaps because of reduced turgor of the coronary vascular bed, marked reductions in systolic work (and therefore myocardial O2 requirements), and local accumulation of hydrogen ion and metabolites following acute severe reduction of coronary flow. The increased chamber stiffness during hypoxia is accompanied by marked slowing of relaxation, with increased diastolic pressure relative to volume persisting throughout diastole.
Full text
PDF











Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Apstein C. S., Deckelbaum L., Hagopian L., Hood W. B., Jr Acute cardiac ischemia and reperfusion: contractility, relaxation, and glycolysis. Am J Physiol. 1978 Dec;235(6):H637–H648. doi: 10.1152/ajpheart.1978.235.6.H637. [DOI] [PubMed] [Google Scholar]
- Apstein C. S., Deckelbaum L., Mueller M., Hagopian L., Hood W. B., Jr Graded global ischemia and reperfusion. Cardiac function and lactate metabolism. Circulation. 1977 Jun;55(6):864–872. doi: 10.1161/01.cir.55.6.864. [DOI] [PubMed] [Google Scholar]
- Apstein C. S., Gravino F., Hood W. B., Jr Limitations of lactate production as an index of myocardial ischemia. Circulation. 1979 Oct;60(4):877–888. doi: 10.1161/01.cir.60.4.877. [DOI] [PubMed] [Google Scholar]
- Apstein C. S., Mueller M., Hood W. B., Jr Ventricular contracture and compliance changes with global ischemia and reperfusion, and their effect on coronary resistance in the rat. Circ Res. 1977 Aug;41(2):206–217. doi: 10.1161/01.res.41.2.206. [DOI] [PubMed] [Google Scholar]
- Barry W. H., Brooker J. Z., Alderman E. L., Harrison D. C. Changes in diastolic stiffness and tone of the left ventricle during angina pectoris. Circulation. 1974 Feb;49(2):255–263. doi: 10.1161/01.cir.49.2.255. [DOI] [PubMed] [Google Scholar]
- Bing O. H., Keefe J. F., Wolk M. J., Finkelstein L. J., Levine H. J. Tension prolongation during recovery from myocardial hypoxia. J Clin Invest. 1971 Mar;50(3):660–666. doi: 10.1172/JCI106536. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Dwyer E. M., Jr Left ventricular pressure-volume alterations and regional disorders of contraction during myocardial ischemia induced by atrial pacing. Circulation. 1970 Dec;42(6):1111–1122. doi: 10.1161/01.cir.42.6.1111. [DOI] [PubMed] [Google Scholar]
- Falsetti H. L., Mates R. E., Carroll R. J., Gupta R. L., Bell A. C. Analysis and correction of pressure wave distortion in fluid-filled catheter systems. Circulation. 1974 Jan;49(1):165–172. doi: 10.1161/01.cir.49.1.165. [DOI] [PubMed] [Google Scholar]
- Forrester J. S., Diamond G., Parmley W. W., Swan H. J. Early increase in left ventricular compliance after myocardial infarction. J Clin Invest. 1972 Mar;51(3):598–603. doi: 10.1172/JCI106849. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Gaasch W. H., Bing O. H., Franklin A., Rhodes D., Bernard S. A., Weintraub R. M. The influence of acute alterations in coronary blood flow on left ventricular diastolic compliance and wall thickness. Eur J Cardiol. 1978 Jun;7 (Suppl):147–161. [PubMed] [Google Scholar]
- Gaasch W. H., Bing O. H., Pine M. B., Franklin A., Clement J., Rhodes D., Phear W. P., Weintraub R. M. Myocardial contracture during prolonged ischemic arrest and reperfusion. Am J Physiol. 1978 Dec;235(6):H619–H627. doi: 10.1152/ajpheart.1978.235.6.H619. [DOI] [PubMed] [Google Scholar]
- Glantz S. A., Misbach G. A., Moores W. Y., Mathey D. G., Lekven J., Stowe D. F., Parmley W. W., Tyberg J. V. The pericardium substantially affects the left ventricular diastolic pressure-volume relationship in the dog. Circ Res. 1978 Mar;42(3):433–441. doi: 10.1161/01.res.42.3.433. [DOI] [PubMed] [Google Scholar]
- Glantz S. A., Parmley W. W. Factors which affect the diastolic pressure-volume curve. Circ Res. 1978 Feb;42(2):171–180. doi: 10.1161/01.res.42.2.171. [DOI] [PubMed] [Google Scholar]
- Greene H. L., Weisfeldt M. L. Determinants of hypoxic and posthypoxic myocardial contracture. Am J Physiol. 1977 May;232(5):H526–H533. doi: 10.1152/ajpheart.1977.232.5.H526. [DOI] [PubMed] [Google Scholar]
- Grossman W., Barry W. H. Diastolic pressure-volume relations in the diseased heart. Fed Proc. 1980 Feb;39(2):148–155. [PubMed] [Google Scholar]
- Grossman W., Mann J. T. Evidence for imparied left ventricular relaxation during acute ischemia in man. Eur J Cardiol. 1978 Jun;7 (Suppl):239–249. [PubMed] [Google Scholar]
- Henry P. D., Schuchleib R., Davis J., Weiss E. S., Sobel B. E. Myocardial contracture and accumulation of mitochondrial calcium in ischemic rabbit heart. Am J Physiol. 1977 Dec;233(6):H677–H684. doi: 10.1152/ajpheart.1977.233.6.H677. [DOI] [PubMed] [Google Scholar]
- Katz A. M., Repke D. I. Quantitative aspects of dog cardiac microsomal calcium binding and calcium uptake. Circ Res. 1967 Aug;21(2):153–162. doi: 10.1161/01.res.21.2.153. [DOI] [PubMed] [Google Scholar]
- Lewis M. J., Grey A. C., Henderson A. H. Determinants of hypoxic contracture in isolated heart muscle preparations. Cardiovasc Res. 1979 Feb;13(2):86–94. doi: 10.1093/cvr/13.2.86. [DOI] [PubMed] [Google Scholar]
- Mann T., Brodie B. R., Grossman W., McLaurin L. P. Effect of angina on the left ventricular diastolic pressure-volume relationship. Circulation. 1977 May;55(5):761–766. doi: 10.1161/01.cir.55.5.761. [DOI] [PubMed] [Google Scholar]
- Mann T., Goldberg S., Mudge G. H., Jr, Grossman W. Factors contributing to altered left ventricular diastolic properties during angina pectoris. Circulation. 1979 Jan;59(1):14–20. doi: 10.1161/01.cir.59.1.14. [DOI] [PubMed] [Google Scholar]
- McCollum W. B., Besch H. R., Jr, Entman M. L., Schwartz A. Apparent initial binding rate of calcium by canine cardiac-relaxing system. Am J Physiol. 1972 Sep;223(3):608–614. doi: 10.1152/ajplegacy.1972.223.3.608. [DOI] [PubMed] [Google Scholar]
- McLaurin L. P., Rolett E. L., Grossman W. Impaired left ventricular relaxation during pacing-induced ischemia. Am J Cardiol. 1973 Nov;32(6):751–757. doi: 10.1016/s0002-9149(73)80002-5. [DOI] [PubMed] [Google Scholar]
- Mirsky I., Rankin J. S. The effects of geometry, elasticity, and external pressures on the diastolic pressure-volume and stiffness-stress relations. How important is the pericardium? Circ Res. 1979 May;44(5):601–611. doi: 10.1161/01.res.44.5.601. [DOI] [PubMed] [Google Scholar]
- Nayler W. G., Poole-Wilson P. A., Williams A. Hypoxia and calcium. J Mol Cell Cardiol. 1979 Jul;11(7):683–706. doi: 10.1016/0022-2828(79)90381-x. [DOI] [PubMed] [Google Scholar]
- Nayler W. G., Williams A. Relaxation in heart muscle: some morphological and biochemical considerations. Eur J Cardiol. 1978 Jun;7 (Suppl):35–50. [PubMed] [Google Scholar]
- Nayler W. G., Yepez C. E., Poole-Wilson P. A. The effect of beta-adrenoceptor and Ca2+ antagonist drugs on the hypoxia-induced increased in resting tension. Cardiovasc Res. 1978 Nov;12(11):666–674. doi: 10.1093/cvr/12.11.666. [DOI] [PubMed] [Google Scholar]
- Palacios I., Johnson R. A., Newell J. B., Powell W. J., Jr Left ventricular end-diastolic pressure volume relationships with experimental acute global ischemia. Circulation. 1976 Mar;53(3):428–436. doi: 10.1161/01.cir.53.3.428. [DOI] [PubMed] [Google Scholar]
- Rickards A. F., Seabra-Gomes R. Observations on the effect of angina on the left ventricle, with special reference to diastolic behavior. Eur J Cardiol. 1978 Jun;7 (Suppl):213–238. [PubMed] [Google Scholar]
- Ross J., Jr Acute displacement of the diastolic pressure-volume curve of the left ventricle: role of the pericardium and the right ventricle. Circulation. 1979 Jan;59(1):32–37. doi: 10.1161/01.cir.59.1.32. [DOI] [PubMed] [Google Scholar]
- Rovetto M. J., Lamberton W. F., Neely J. R. Mechanisms of glycolytic inhibition in ischemic rat hearts. Circ Res. 1975 Dec;37(6):742–751. doi: 10.1161/01.res.37.6.742. [DOI] [PubMed] [Google Scholar]
- SALISBURY P. F., CROSS C. E., RIEBEN P. A. Influence of coronary artery pressure upon myocardial elasticity. Circ Res. 1960 Jul;8:794–800. doi: 10.1161/01.res.8.4.794. [DOI] [PubMed] [Google Scholar]
- Serizawa T., Carabello B. A., Grossman W. Effect of pacing-induced ischemia on left ventricular diastolic pressure-volume relations in dogs with coronary stenoses. Circ Res. 1980 Mar;46(3):430–439. doi: 10.1161/01.res.46.3.430. [DOI] [PubMed] [Google Scholar]
- Shirato K., Shabetai R., Bhargava V., Franklin D., Ross J., Jr Alteration of the left ventricular diastolic pressure-segment length relation produced by the pericardium. Effects of cardiac distension and afterload reduction in conscious dogs. Circulation. 1978 Jun;57(6):1191–1198. doi: 10.1161/01.cir.57.6.1191. [DOI] [PubMed] [Google Scholar]
- Tyberg J. V., Forrester J. S., Wyatt H. L., Goldner S. J., Parmley W. W., Swan H. J. An analysis of segmental ischemic dysfunction utilizing the pressure-length loop. Circulation. 1974 Apr;49(4):748–754. doi: 10.1161/01.cir.49.4.748. [DOI] [PubMed] [Google Scholar]
- Tyberg J. V., Yeatman L. A., Parmley W. W., Urschel C. W., Sonnenblick E. H. Effects of hypoxia on mechanics of cardiac contraction. Am J Physiol. 1970 Jun;218(6):1780–1788. doi: 10.1152/ajplegacy.1970.218.6.1780. [DOI] [PubMed] [Google Scholar]
- Weisfeldt M. L., Armstrong P., Scully H. E., Sanders C. A., Daggett W. M. Incomplete relaxation between beats after myocardial hypoxia and ischemia. J Clin Invest. 1974 Jun;53(6):1626–1636. doi: 10.1172/JCI107713. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Weisfeldt M. L., Frederiksen J. W., Yin F. C., Weiss J. L. Evidence of incomplete left ventricular relaxation in the dog: prediction from the time constant for isovolumic pressure fall. J Clin Invest. 1978 Dec;62(6):1296–1302. doi: 10.1172/JCI109250. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Weiss J. L., Frederiksen J. W., Weisfeldt M. L. Hemodynamic determinants of the time-course of fall in canine left ventricular pressure. J Clin Invest. 1976 Sep;58(3):751–760. doi: 10.1172/JCI108522. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Wiegner A. W., Allen G. J., Bing O. H. Weak and strong myocardium in series: implications for segmental dysfunction. Am J Physiol. 1978 Dec;235(6):H776–H783. doi: 10.1152/ajpheart.1978.235.6.H776. [DOI] [PubMed] [Google Scholar]
