Skip to main content
The Journal of Clinical Investigation logoLink to The Journal of Clinical Investigation
. 1981 Jul;68(1):103–110. doi: 10.1172/JCI110224

Studies of the mechanism by which 3,5,3'- triiodothyronine stimulates 2-deoxyglucose uptake in rat thymocytes in vitro. Role of calcium and adenosine 3':5'-monophosphate.

J Segal, S H Ingbar
PMCID: PMC370777  PMID: 6265495

Abstract

The present experiments were designed to explore the mechanism whereby 3,5,3'-triiodothyronine (T3) stimulates the uptake of 2-deoxy-D-glucose (2-DG) in rat thymocytes in vitro. Addition of T3 evoked a transient, dose-related increase in cellular cyclic (c) AMP concentrations, evident within 5 min. followed soon by an increase in 2-DG uptake. The effects of T3 on both cAMP concentration and 2-DG uptake were dependent upon the presence of extracellular calcium. Epinephrine also induced a sequential increase in thymocyte cAMP concentration and 2-DG uptake. These responses were more prompt than those to T3, but were calcium independent. As with their combined effects on 2-DG uptake, T3 and epinephrine produced synergistic or additive effects on cellular cAMP concentration. Dibutyryl cAMP also stimulated 2-DG uptake, an effect that was more prompt than that of epinephrine, and like that of epinephrine, was calcium independent. Prior or simultaneous addition of L-alprenolol (10 microM), which, we have previously shown, blocks the effect of both T3 and epinephrine on 2-DG uptake, also blocked the increase in thymocyte cAMP concentration induced by these agents. In contrast, L-alprenolol failed to block the increase in 2-DG uptake produced by dibutyryl cAMP. On the basis of these observations we suggest that T3 increases 2-DC uptake in the rat thymocyte by increasing the cellular concentration of cAMP, which then acts to enhance sugar transport. The increase in 2-DC uptake induced by epinephrine is also mediated by an increase in cAMP concentration. The greater response of cellular cAMP concentration to T3 and epinephrine when added together than to either agent added alone may explain their synergistic action to increase 2-DG uptake. We suggest that these actions of T3 and epinephrine are both initiated at the level of the plasma membrane.

Full text

PDF
103

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Atkins D., Hunt N. H., Ingleton P. M., Martin T. J. Rat osteogenic sarcoma cells: isolation and effects of hormones on the production of cyclic AMP and cyclic GMP. Endocrinology. 1977 Aug;101(2):555–561. doi: 10.1210/endo-101-2-555. [DOI] [PubMed] [Google Scholar]
  2. Bihler I., Sawh P. C., Sloan I. G. Dual effect of adrenalin on sugar transport in rat diaphragm muscle. Biochim Biophys Acta. 1978 Jul 4;510(2):349–360. doi: 10.1016/0005-2736(78)90035-4. [DOI] [PubMed] [Google Scholar]
  3. Birnbaumer L., Rodbell M. Adenyl cyclase in fat cells. II. Hormone receptors. J Biol Chem. 1969 Jul 10;244(13):3477–3482. [PubMed] [Google Scholar]
  4. Blackmore P. F., Brumley F. T., Marks J. L., Exton J. H. Studies on alpha-adrenergic activation of hepatic glucose output. Relationship between alpha-adrenergic stimulation of calcium efflux and activation of phosphorylase in isolated rat liver parenchymal cells. J Biol Chem. 1978 Jul 25;253(14):4851–4858. [PubMed] [Google Scholar]
  5. Bär H. P., Hechter O. Adenyl cyclase and hormone action. I. Effects of adrenocorticotropic hormone, glucagon, and epinephrine on the plasma membrane of rat fat cells. Proc Natl Acad Sci U S A. 1969 Jun;63(2):350–356. doi: 10.1073/pnas.63.2.350. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Caldwell A., Fain J. N. Triiodothyronine stimulation of cyclic adenosine 3',5'-monophosphate accumulation in fat cells. Endocrinology. 1971 Nov;89(5):1195–1204. doi: 10.1210/endo-89-5-1195. [DOI] [PubMed] [Google Scholar]
  7. Casillas E. R., Hoskins D. D. Activation of monkey spermatozoal adenyl cyclase by thyroxine and triiodothyronine. Biochem Biophys Res Commun. 1970 Jul 27;40(2):255–262. doi: 10.1016/0006-291x(70)91003-x. [DOI] [PubMed] [Google Scholar]
  8. Challoner D. R., Allen D. O. An in vitro effect of triiodothyronine on lipolysis, cyclic AMP-C14 accumulation and oxygen consumption in isolated fat cells. Metabolism. 1970 Jul;19(7):480–487. doi: 10.1016/0026-0495(70)90002-8. [DOI] [PubMed] [Google Scholar]
  9. Exton J. H. Mechanisms involved in alpha-adrenergic phenomena: role of calcium ions in actions of catecholamines in liver and other tissues. Am J Physiol. 1980 Jan;238(1):E3–12. doi: 10.1152/ajpendo.1980.238.1.E3. [DOI] [PubMed] [Google Scholar]
  10. Fain J. N. Biochemical aspects of drug and hormone action on adipose tissue. Pharmacol Rev. 1973 Mar;25(1):67–118. [PubMed] [Google Scholar]
  11. Freedman M. H. Early biochemical events in lymphocyte activation. I. Investigations on the nature and significance of early calcium fluxes observed in mitogen-induced T and B lymphocytes. Cell Immunol. 1979 May;44(2):290–313. doi: 10.1016/0008-8749(79)90007-8. [DOI] [PubMed] [Google Scholar]
  12. Freedman M. H., Raff M. C. Induction of increased calcium uptake in mouse T lymphocytes by concanavalin A and its modulation by cyclic nucleotides. Nature. 1975 May 29;255(5507):378–382. doi: 10.1038/255378a0. [DOI] [PubMed] [Google Scholar]
  13. Harkcom T. M., Kim J. K., Palumbo P. J., Hui Y. S., Dousa T. P. Modulatory effect of thyroid function on enzymes of the vasopressin-sensitive adenosine 3',5'-monophosphate system in renal medulla. Endocrinology. 1978 May;102(5):1475–1484. doi: 10.1210/endo-102-5-1475. [DOI] [PubMed] [Google Scholar]
  14. Herd P. A. Thyroid hormone-divalent cation interactions. Effect of thyroid hormone on mitochondrial calcium metabolism. Arch Biochem Biophys. 1978 May;188(1):220–225. doi: 10.1016/0003-9861(78)90375-2. [DOI] [PubMed] [Google Scholar]
  15. Kram R., Mamont P., Tomkins G. M. Pleiotypic control by adenosine 3':5'-cyclic monophosphate: a model for growth control in animal cells. Proc Natl Acad Sci U S A. 1973 May;70(5):1432–1436. doi: 10.1073/pnas.70.5.1432. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Krishna G., Hynie S., Brodie B. B. Effects of thyroid hormones on adenyl cyclase in adipose tissue and on free fatty acid mobilization. Proc Natl Acad Sci U S A. 1968 Mar;59(3):884–889. doi: 10.1073/pnas.59.3.884. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Kuroki T., Yamakawa S. Effects of dibutyryl cyclic adenosine 3':5' monophosphate and theophylline on 2-deoxy-D-glucose and 2-aminoisobutyric acid uptake by hamster embryo cells. Int J Cancer. 1974 Jul 15;14(1):32–39. doi: 10.1002/ijc.2910140105. [DOI] [PubMed] [Google Scholar]
  18. Lefkowitz R. J., Roth J., Pastan I. Effects of calcium on ACTH stimulation of the adrenal: separation of hormone binding from adenyl cyclase activation. Nature. 1970 Nov 28;228(5274):864–866. doi: 10.1038/228864a0. [DOI] [PubMed] [Google Scholar]
  19. Levey G. S., Epstein S. E. Myocardial adenyl cyclase: activation by thyroid hormones and evidence for two adenyl cyclase systems. J Clin Invest. 1969 Sep;48(9):1663–1669. doi: 10.1172/JCI106131. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Levey G. S., Skelton C. L., Epstein S. E. Influence of hyperthyroidism on the effects of norepinephrine on myocardial adenyl cyclase activity and contractile state. Endocrinology. 1969 Dec;85(6):1004–1009. doi: 10.1210/endo-85-6-1004. [DOI] [PubMed] [Google Scholar]
  21. Malbon C. C., Moreno F. J., Cabelli R. J., Fain J. N. Fat cell adenylate cyclase and beta-adrenergic receptors in altered thyroid states. J Biol Chem. 1978 Feb 10;253(3):671–678. [PubMed] [Google Scholar]
  22. Moran J., Hunziker W., Fischer J. A. Calcitonin and calcium ionophores: cyclic AMP responses in cells of a human lymphoid line. Proc Natl Acad Sci U S A. 1978 Aug;75(8):3984–3988. doi: 10.1073/pnas.75.8.3984. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Pawlikowski M., Karasek E., Kunert-Radek J., Lewandowski J. Effect of thyroxine and of thyrotropin releasing hormone on cyclic AMP concentration in the anterior pituitary gland in vitro. Endocrinol Exp. 1977 Mar;11(1):33–36. [PubMed] [Google Scholar]
  24. Perkins J. P. Adenyl cyclase. Adv Cyclic Nucleotide Res. 1973;3:1–64. [PubMed] [Google Scholar]
  25. Popovic W. J., Brown J. E., Adamson J. W. The influence of thyroid hormones on in vitro erythropoiesis. Mediation by a receptor with beta adrenergic properties. J Clin Invest. 1977 Oct;60(4):907–913. doi: 10.1172/JCI108845. [DOI] [PMC free article] [PubMed] [Google Scholar]
  26. Rall T. W. Role of adenosine 3',5'-monophosphate (cyclic AMP) in actions of catecholamines. Pharmacol Rev. 1972 Jun;24(2):399–409. [PubMed] [Google Scholar]
  27. Rasmussen H., Goodman D. B. Relationships between calcium and cyclic nucleotides in cell activation. Physiol Rev. 1977 Jul;57(3):421–509. doi: 10.1152/physrev.1977.57.3.421. [DOI] [PubMed] [Google Scholar]
  28. Reckless J. P., Gilbert C. H., Galton D. J. Alpha-adrenergic receptor activity, cyclic AMP and lipolysis in adipose tissue of hypothyroid man and rat. J Endocrinol. 1976 Mar;68(3):419–430. doi: 10.1677/joe.0.0680419. [DOI] [PubMed] [Google Scholar]
  29. Rosenqvist U. Effect of thyroidectomy on intracellular amount and distribution of exchangeable Ca2+ in isolated rat liver cells. Mol Cell Endocrinol. 1978 Oct;12(1):111–117. doi: 10.1016/0303-7207(78)90105-3. [DOI] [PubMed] [Google Scholar]
  30. Segal J., Ingbar S. H. Direct and synergistic interactions of 3,5,3'-triiodothyronine and the adrenergic system in stimulating sugar transport by rat thymocytes. J Clin Invest. 1980 May;65(5):958–966. doi: 10.1172/JCI109782. [DOI] [PMC free article] [PubMed] [Google Scholar]
  31. Segal J., Ingbar S. H. Stimulation by triiodothyronine of the in vitro uptake of sugars by rat thymocytes. J Clin Invest. 1979 Mar;63(3):507–515. doi: 10.1172/JCI109329. [DOI] [PMC free article] [PubMed] [Google Scholar]
  32. Segal J., Ingbar S. H. Stimulation of 2-deoxy-D-glucose uptake in rat thymocytes in vitro by physiological concentrations of triiodothyronine, insulin, or epinephrine. Endocrinology. 1980 Nov;107(5):1354–1358. doi: 10.1210/endo-107-5-1354. [DOI] [PubMed] [Google Scholar]
  33. Sheppard J. R. Difference in the cyclic adenosine 3',5'-monophosphate levels in normal and transformed cells. Nat New Biol. 1972 Mar 1;236(61):14–16. doi: 10.1038/newbio236014a0. [DOI] [PubMed] [Google Scholar]
  34. Sutherland E. W. Studies on the mechanism of hormone action. Science. 1972 Aug 4;177(4047):401–408. doi: 10.1126/science.177.4047.401. [DOI] [PubMed] [Google Scholar]
  35. Wallach S., Bellavia J. V., Gamponia P. J., Bristrim P. Thyroxine-induced stimulation of hepatic cell transport of calcium and magnesium. J Clin Invest. 1972 Jun;51(6):1572–1577. doi: 10.1172/JCI106954. [DOI] [PMC free article] [PubMed] [Google Scholar]
  36. Whitesell R. R., Johnson R. A., Tarpley H. L., Regen D. M. Mitogen-stimulated glucose transport in thymocytes. Possible role of Ca++ and antagonism by adenosine 3':5'-monophosphate. J Cell Biol. 1977 Feb;72(2):456–469. doi: 10.1083/jcb.72.2.456. [DOI] [PMC free article] [PubMed] [Google Scholar]
  37. Yasmeen D., Laird A. J., Hume D. A., Weidemann M. J. Activation of 3-O-methyl-glucose transport in rat thymus lymphocytes by concanavalin A. Temperature and calcium ion dependence and sensitivity to puromycin but to cycloheximide. Biochim Biophys Acta. 1977 Nov 7;500(1):89–102. doi: 10.1016/0304-4165(77)90049-6. [DOI] [PubMed] [Google Scholar]

Articles from Journal of Clinical Investigation are provided here courtesy of American Society for Clinical Investigation

RESOURCES