Skip to main content
The Journal of Clinical Investigation logoLink to The Journal of Clinical Investigation
. 1981 Sep;68(3):742–751. doi: 10.1172/JCI110310

Analysis of Labeling and Clearance of Lung Surfactant Phospholipids in Rabbit

EVIDENCE OF BIDIRECTIONAL SURFACTANT FLUX BETWEEN LAMELLAR BODIES AND ALVEOLAR LAVAGE

Mikko Hallman 1,2, Benita L Epstein 1,2, Louis Gluck 1,2
PMCID: PMC370856  PMID: 6895081

Abstract

Turnover and clearance of lung surfactant phospholipids were studied with particular reference to myoinositol-induced perturbation in the acidic phospholipids. Administration of myoinositol decreased [3H]palmitate and [32P]phosphate incorporation into phosphatidylglycerol by 80-90% in whole lung, and by 94-99% in lamellar bodies and in alveolar lavage. The increased incorporation of radioactive isotopes into phosphatidylinositol following myoinositol, was inverse to the decrease in phosphatidyl-glycerol incorporation. Myoinositol treatment affected neither content nor labeling of phosphatidylcholine or disaturated phosphatidylcholine as studied within 50 h of administration. Phosphatidylglycerol was pulse labeled by intravenous [32P]phosphate and [3H]palmitate, followed by myoinositol. The biological half-lives of phosphatidylglycerol in the microsomal fraction, lamellar bodies, and alveolar lavage were 1.6, 4.6, 5.4 h (with 3H), and 2.8, 6.5, 7.0 h (with 32P), respectively.

32P-labeled lung surfactant tracer was applied to the airways in saline suspension and the clearance of phospholipid radioactivity was measured in alveolar lavage, alveolar macrophages, lamellar bodies and lung homogenates. The clearance rates of phosphatidylcholine, disaturated phosphatidylcholine, phosphatidylglycerol, and phosphatidylinositol as studied in whole lung over 6 h were 3.4-5.8% h. Only a small amount of phospholipid radioactivity was recovered in the alveolar macrophage fraction (including bis-[monoacylglycerol]phosphate). Phospholipid radioactivity in alveolar lavage fell to 40-70% of the maximum during the 1st h, and to 5-18% over the next 6 h. During 2 h after the application of phospholipids, the radioactivity in the lamellar body fraction increased, and the specific radioactivities approached those in alveolar lavage. The association of phosphatidylglycerol with lamellar bodies was unaffected by myoinositol.

Phosphatidylinositol entered more slowly than did phosphatidylglycerol from microsomes to the alveolar lavage fraction, and from alveolar lavage to lamellar bodies. These differences may be of importance regarding the poor performance of phosphatidylinositol-containing surfactant at birth. Further investigations are needed to clarify the possible role for the postulated bidirectional surfactant flux between the lamellar body and alveolar lavage fractions in maintaining the activity of surfactant.

Full text

PDF
742

Images in this article

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Adams F. H., Towers B., Osher A. B., Ikegami M., Fujiwara T., Nozaki M. Effects of tracheal instillation of natural surfactant in premature lambs. I. Clinical and autopsy findings. Pediatr Res. 1978 Aug;12(8):841–848. doi: 10.1203/00006450-197808000-00008. [DOI] [PubMed] [Google Scholar]
  2. Askin F. B., Kuhn C. The cellular origin of pulmonary surfactant. Lab Invest. 1971 Sep;25(3):260–268. [PubMed] [Google Scholar]
  3. BLIGH E. G., DYER W. J. A rapid method of total lipid extraction and purification. Can J Biochem Physiol. 1959 Aug;37(8):911–917. doi: 10.1139/o59-099. [DOI] [PubMed] [Google Scholar]
  4. Bangham A. D., Morley C. J., Phillips M. C. The physical properties of an effective lung surfactant. Biochim Biophys Acta. 1979 Jun 21;573(3):552–556. doi: 10.1016/0005-2760(79)90229-7. [DOI] [PubMed] [Google Scholar]
  5. Chevalier G., Collet A. J. In vivo incorporation of choline- 3 H, leucine- 3 H and galactose- 3 H in alveolar type II pneumocytes in relation to surfactant synthesis. A quantitative radoautographic study in mouse by electron microscopy. Anat Rec. 1972 Nov;174(3):289–310. doi: 10.1002/ar.1091740303. [DOI] [PubMed] [Google Scholar]
  6. DiAugustine R. P. Lung concentric laminar organelle. Hydrolase activity and compositional analysis. J Biol Chem. 1974 Jan 25;249(2):584–593. [PubMed] [Google Scholar]
  7. Gil J., Magno M. Fusion of pinocytotic vesicles in liquid filled lungs: a mechanism of cellular damage. Exp Lung Res. 1980 Mar;1(1):43–56. doi: 10.3109/01902148009057512. [DOI] [PubMed] [Google Scholar]
  8. Gil J., Reiss O. K. Isolation and characterization of lamellar bodies and tubular myelin from rat lung homogenates. J Cell Biol. 1973 Jul;58(1):152–171. doi: 10.1083/jcb.58.1.152. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Hallman M., Epstein B. L. Role of myo-inositol in the synthesis of phosphatidylglycerol and phosphatidylinositol in the lung. Biochem Biophys Res Commun. 1980 Feb 27;92(4):1151–1159. doi: 10.1016/0006-291x(80)90407-6. [DOI] [PubMed] [Google Scholar]
  10. Hallman M., Gluck L. Formation of acidic phospholipids in rabbit lung during perinatal development. Pediatr Res. 1980 Nov;14(11):1250–1259. doi: 10.1203/00006450-198011000-00020. [DOI] [PubMed] [Google Scholar]
  11. Hallman M., Gluck L. Phosphatidylglycerol in lung surfactant. III. Possible modifier of surfactant function. J Lipid Res. 1976 May;17(3):257–262. [PubMed] [Google Scholar]
  12. Heath M. F., Jacobson W. Phospholipases A1 and A2 in lamellar inclusion bodies of the alveolar epithelium of rabbit lung. Biochim Biophys Acta. 1976 Sep 27;441(3):443–452. doi: 10.1016/0005-2760(76)90241-1. [DOI] [PubMed] [Google Scholar]
  13. Jobe A., Kirkpatrick E., Gluck L. Labeling of phospholipids in the surfactant and subcellular fractions of rabbit lung. J Biol Chem. 1978 Jun 10;253(11):3810–3816. [PubMed] [Google Scholar]
  14. Jobe A. The labeling and biological half-life of phosphatidylcholine in subcellular fractions of rabbit lung. Biochim Biophys Acta. 1977 Dec 21;489(3):440–453. doi: 10.1016/0005-2760(77)90165-5. [DOI] [PubMed] [Google Scholar]
  15. Johnston J. M., Reynolds G., Wylie M. B., MacDonald P. C. The phosphohydrolase activity in lamellar bodies and its relationship to phosphatidylglycerol and lung surfactant formation. Biochim Biophys Acta. 1978 Oct 25;531(1):65–71. doi: 10.1016/0005-2760(78)90182-0. [DOI] [PubMed] [Google Scholar]
  16. Kankare P., Suovaniemi O. A simple method for determination of phosphate from thin-layer chromatographic plates. J Chromatogr. 1971 Nov 26;62(3):485–486. doi: 10.1016/s0021-9673(00)91405-5. [DOI] [PubMed] [Google Scholar]
  17. Kikkawa Y., Motoyama E. K., Gluck L. Study of the lungs of fetal and newborn rabbits. Morphologic, biochemical, and surface physical development. Am J Pathol. 1968 Jan;52(1):177–210. [PMC free article] [PubMed] [Google Scholar]
  18. King R. J., Martin H. Intracellular metabolism of the apoproteins of pulmonary surfactant in rat lung. J Appl Physiol Respir Environ Exerc Physiol. 1980 May;48(5):812–820. doi: 10.1152/jappl.1980.48.5.812. [DOI] [PubMed] [Google Scholar]
  19. LOWRY O. H., ROSEBROUGH N. J., FARR A. L., RANDALL R. J. Protein measurement with the Folin phenol reagent. J Biol Chem. 1951 Nov;193(1):265–275. [PubMed] [Google Scholar]
  20. MACKLIN C. C. The pulmonary alveolar mucoid film and the pneumonocytes. Lancet. 1954 May 29;266(6822):1099–1104. doi: 10.1016/s0140-6736(54)92154-6. [DOI] [PubMed] [Google Scholar]
  21. Mason R. J., Nellenbogen J., Clements J. A. Isolation of disaturated phosphatidylcholine with osmium tetroxide. J Lipid Res. 1976 May;17(3):281–284. [PubMed] [Google Scholar]
  22. Matsuzawa Y., Poorthuis B. J., Hostetler K. Y. Mechanism of phosphatidylinostiol stimulation of lysosomal bis (monoacylglyceryl)phosphate synthesis. J Biol Chem. 1978 Oct 10;253(19):6650–6653. [PubMed] [Google Scholar]
  23. McClenahan J. B., Urtnowski A. Effect of ventilation on surfactant, and its turnover rate. J Appl Physiol. 1967 Aug;23(2):215–220. doi: 10.1152/jappl.1967.23.2.215. [DOI] [PubMed] [Google Scholar]
  24. Niden A. H. Bronchiolar and large alveolar cell in pulmonary phospholipid metabolism. Science. 1967 Dec 8;158(3806):1323–1324. doi: 10.1126/science.158.3806.1323. [DOI] [PubMed] [Google Scholar]
  25. Oyarzun M. J., Clements J. A. Control of lung surfactant by ventilation, adrenergic mediators, and prostaglandins in the rabbit. Am Rev Respir Dis. 1978 May;117(5):879–891. doi: 10.1164/arrd.1978.117.5.879. [DOI] [PubMed] [Google Scholar]
  26. Oyarzún M. J., Clements J. A., Baritussio A. Ventilation enhances pulmonary alveolar clearance of radioactive dipalmitoyl phosphatidylcholine in liposomes. Am Rev Respir Dis. 1980 Apr;121(4):709–721. doi: 10.1164/arrd.1980.121.4.709. [DOI] [PubMed] [Google Scholar]
  27. Sottocasa G. L., Kuylenstierna B., Ernster L., Bergstrand A. An electron-transport system associated with the outer membrane of liver mitochondria. A biochemical and morphological study. J Cell Biol. 1967 Feb;32(2):415–438. doi: 10.1083/jcb.32.2.415. [DOI] [PMC free article] [PubMed] [Google Scholar]
  28. Thet L. A., Clerch L., Massaro G. D., Massaro D. Changes in sedimentation of surfactant in ventilated excised rat lungs. Physical alterations in surfactant associated with the development and reversal of atelectasis. J Clin Invest. 1979 Aug;64(2):600–608. doi: 10.1172/JCI109499. [DOI] [PMC free article] [PubMed] [Google Scholar]
  29. Williams M. C. Conversion of lamellar body membranes into tubular myelin in alveoli of fetal rat lungs. J Cell Biol. 1977 Feb;72(2):260–277. doi: 10.1083/jcb.72.2.260. [DOI] [PMC free article] [PubMed] [Google Scholar]
  30. Wyszogrodski I., Kyei-Aboagye K., Taeusch H. W., Jr, Avery M. E. Surfactant inactivation by hyperventilation: conservation by end-expiratory pressure. J Appl Physiol. 1975 Mar;38(3):461–466. doi: 10.1152/jappl.1975.38.3.461. [DOI] [PubMed] [Google Scholar]
  31. Young S. L., Tierney D. F. Dipalmitoyl lecithin secretion and metabolism by the rat lung. Am J Physiol. 1972 Jun;222(6):1539–1544. doi: 10.1152/ajplegacy.1972.222.6.1539. [DOI] [PubMed] [Google Scholar]
  32. van Golde L. M., Oldenborg V., Post M., Batenburg J. J., Poorthuis B. J., Wirtz K. W. Phospholipid transfer proteins in rat lung. Identification of a protein specific for phosphatidylglycerol. J Biol Chem. 1980 Jul 10;255(13):6011–6013. [PubMed] [Google Scholar]

Articles from Journal of Clinical Investigation are provided here courtesy of American Society for Clinical Investigation

RESOURCES