Skip to main content
The Journal of Clinical Investigation logoLink to The Journal of Clinical Investigation
. 1981 Nov;68(5):1190–1196. doi: 10.1172/JCI110364

Sulfation of Lithocholate as a Possible Modifier of Chenodeoxycholic Acid-induced Elevations of Serum Transaminase in Patients with Gallstones

J W Marks 1,2,3, S O Sue 1,2,3, B J Pearlman 1,2,3, G G Bonorris 1,2,3, P Varady 1,2,3, J M Lachin 1,2,3, L J Schoenfield 1,2,3
PMCID: PMC370913  PMID: 7298846

Abstract

Chenodeoxycholic acid (CDC), through its metabolite, lithocholic acid (LC), is hepatotoxic in certain species. The cause of elevations of serum transaminase in 25% of humans ingesting CDC, however, is unknown, but also may be due to LC. Because efficient hepatic sulfation of LC may protect against hepatic injury, the aim of this study was to determine if sulfation of LC might modify CDC-induced elevations of transaminase. Pretreatment sulfation fraction (SF) was estimated in 63 randomly selected patients with gallstones in a double-blind randomized trial of CDC, 750 mg/d, 375 mg/d, or placebo; in 27 of these, SF was repeated at 1 or 2 yr. In four other patients, the SF was measured at 2 yr only. Serum glutamic oxaloacetic transaminase and serum glutamic pyruvic transaminase were determined monthly for 3 mo and then every 3 or 4 mo; an elevation of transaminase was defined as > 150% of the normal upper limit in asymptomatic patients. 10 μCi of 3H-glyco-LC (sp act 84 mCi/mol) was ingested 10-12 h before fasting duodenal biliary drainage. Bile acids in bile were separated by thin-layer chromatography. The SF was estimated as a percentage of total radioactivity (scintillation counting) in sulfated glyco-LC. The standard deviation for replicate SF determinations (n = 311) was 2.1% The pretreatment SF (mean 60.7±1.7 SEM) correlated inversely with age (r = 0.336, P < 0.005) and directly with the obesity index (r = 0.495, P > 0.001), but was independent of sex. The SF, remeasured at 1 or 2 yr, did not change significantly with time or CDC. Among CDC-treated patients, elevations of transaminase occurred in 75% of patients with a SF < 45% vs. 11% with a SF > 45% (P < 0.001). In conclusion, a SF < 45% occurred in patients with gallstones who had a high probability of developing elevated serum transaminase when treated with CDC. Thus, sulfation of lithocholate may modify CDC-induced elevations of serum transaminase.

Full text

PDF
1190

Images in this article

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Allan R. N., Thistle J. L., Hofmann A. F., Carter J. A., Yu P. Y. Lithocholate metabolism during chenotherapy for gallstone dissolution. 1. Serum levels of sulphated and unsulphated lithocholates. Gut. 1976 Jun;17(6):405–412. doi: 10.1136/gut.17.6.405. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Allan R. N., Thistle J. L., Hofmann A. F. Lithocholate metabolism during chemotherapy for gallstone dissolution. 2. Absorption and sulphation. Gut. 1976 Jun;17(6):413–419. doi: 10.1136/gut.17.6.413. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Bremmelgaard A., Pedersen L. Bile acids in bile during long-term chenodeoxycholic acid treatment. Scand J Gastroenterol. 1976;11(2):161–165. [PubMed] [Google Scholar]
  4. Cowen A. E., Korman M. G., Hofmann A. F., Cass O. W., Coffin S. B. Metabolism of lithocholate in healthy man. II. Enterohepatic circulation. Gastroenterology. 1975 Jul;69(1):67–76. [PubMed] [Google Scholar]
  5. Cowen A. E., Korman M. G., Hofmann A. F., Thomas P. J. Metabolism of lithocholate in healthy man. III. Plasma disappearance of radioactivity after intravenous injection of labeled lithocholate and its derivatives. Gastroenterology. 1975 Jul;69(1):77–82. [PubMed] [Google Scholar]
  6. DANIELSSON H., ENEROTH P., HELLSTROM K., LINDSTEDT S., SJOVALL J. On the turnover and excretory products of cholic and chenodeoxycholic acid in man. J Biol Chem. 1963 Jul;238:2299–2304. [PubMed] [Google Scholar]
  7. Dyrszka H., Salen G., Zaki F. G., Chen T., Mosbach E. H. Hepatic toxicity in the rhesus monkey treated with chenodeoxycholic acid for 6 months: biochemical and ultrastructural studies. Gastroenterology. 1976 Jan;70(1):93–104. [PubMed] [Google Scholar]
  8. Gadacz T. R., Allan R. N., Mack E., Hofmann A. F. Impaired lithocholate sulfation in the rhesus monkey: a possible mechanism for chenodeoxycholate toxicity. Gastroenterology. 1976 Jun;70(6):1125–1129. [PubMed] [Google Scholar]
  9. Gerolami A., Sarles H., Brette R., Paraf A., Rautureau J., Debray C., Bermann C., Etienne J. P., Chaput J. C., Petite J. P. Controlled trial of chenodeoxycholic therapy for radiolucent gallstones. A multicenter study. Digestion. 1977;16(4):299–307. doi: 10.1159/000198082. [DOI] [PubMed] [Google Scholar]
  10. Grundy S. M., Metzger A. L. A physiological method for estimation of hepatic secretion of biliary lipids in man. Gastroenterology. 1972 Jun;62(6):1200–1217. [PubMed] [Google Scholar]
  11. Koch M. M., Giampieri M. P., Lorenzini I., Jezequel A. M., Orlandi F. Effect of chenodeoxycholic acid on liver structure and function in man: a stereological and biochemical study. Digestion. 1980;20(1):8–21. doi: 10.1159/000198409. [DOI] [PubMed] [Google Scholar]
  12. Lachin J. M., Marks J. W., Schoenfield L. J., Tyor M. P., Bennett P. H., Grundy S. M., Hardison W. G., Shaw L. W., Thistle J. L., Vlahcevic Z. R. Design and methodological considerations in the National Cooperative Gallstone Study: a multicenter clinical trial. Control Clin Trials. 1981 Sep;2(3):177–229. doi: 10.1016/0197-2456(81)90012-x. [DOI] [PubMed] [Google Scholar]
  13. Low-Beer T. S., Tyor M. P., Lack L. Effects of sulfation of taurolithocholic and glycolithocholic acids on their intestinal transport. Gastroenterology. 1969 Apr;56(4):721–726. [PubMed] [Google Scholar]
  14. Löf L., Wengle B. Enzymatic sulphation of bile salts in human liver. Biochim Biophys Acta. 1978 Sep 28;530(3):451–460. doi: 10.1016/0005-2760(78)90165-0. [DOI] [PubMed] [Google Scholar]
  15. Löf L., Wengle B. Enzymatic sulphation of bile salts in man. Scand J Gastroenterol. 1979;14(5):513–519. doi: 10.3109/00365527909181383. [DOI] [PubMed] [Google Scholar]
  16. Morrissey K. P., McSherry C. K., Swarm R. L., Nieman W. H., Deitrick J. E. Toxicity of chenodeoxycholic acid in the nonhuman primate. Surgery. 1975 Jun;77(6):851–860. [PubMed] [Google Scholar]
  17. Palmer R. H. Bile acid sulfates. II. Formation, metabolism, and excretion of lithocholic acid sulfates in the rat. J Lipid Res. 1971 Nov;12(6):680–687. [PubMed] [Google Scholar]
  18. Palmer R. H. Bile acids, liver injury, and liver disease. Arch Intern Med. 1972 Oct;130(4):606–617. [PubMed] [Google Scholar]
  19. Palmer R. H., Bolt M. G. Bile acid sulfates. I. Synthesis of lithocholic acid sulfates and their identification in human bile. J Lipid Res. 1971 Nov;12(6):671–679. [PubMed] [Google Scholar]
  20. Salen G., Dyrszka H., Chen T., Saltzman W. H., Mosbach E. H. Letter Prevention of chenodeoxycholic-acid toxicity with lincomycin. Lancet. 1975 May 10;1(7915):1082–1082. doi: 10.1016/s0140-6736(75)91844-9. [DOI] [PubMed] [Google Scholar]
  21. Sarva R. P., Fromm H., Farivar S., Sembrat R. F., Mendelow H., Shinozuka H., Wolfson S. K. Comparison of the effects between ursodeoxycholic and chenodeoxycholic acids on liver function and structure and bile acid composition in the Rhesus Monkey. Gastroenterology. 1980 Oct;79(4):629–636. [PubMed] [Google Scholar]
  22. Schwenk M., Hofmann A. F., Carlson G. L., Carter J. A., Coulston F., Greim H. Bile acid conjugation in the chimpanzee: effective sulfation of lithocholic acid. Arch Toxicol. 1978 Apr 27;40(2):109–118. doi: 10.1007/BF01891965. [DOI] [PubMed] [Google Scholar]
  23. Stiehl A., Raedsch R., Kommerell B. Increased sulfation of lithocholate in patients with cholesterol gallstones during chenodeoxycholate treatment. Digestion. 1975;12(2):105–110. doi: 10.1159/000197660. [DOI] [PubMed] [Google Scholar]
  24. Thistle J. L., Hofmann A. F., Ott B. J., Stephens D. H. Chenotherapy for gallstone dissolution. I. Efficacy and safety. JAMA. 1978 Mar 13;239(11):1041–1046. [PubMed] [Google Scholar]
  25. Thomas P. J., Hofmann A. F. Letter: A simple calculation of the lithogenic index of bile: expressing biliary lipid composition on rectangular coordinates. Gastroenterology. 1973 Oct;65(4):698–700. [PubMed] [Google Scholar]
  26. Webster K. H., Lancaster M. C., Hofmann A. F., Wease D. F., Baggenstoss A. H. Influence of primary bile acid feeding on cholesterol metabolism and hepatic function in the rhesus monkey. Mayo Clin Proc. 1975 Mar;50(3):134–138. [PubMed] [Google Scholar]
  27. Yousef I. M., Tuchweber B., Vonk R. J., Massé D., Audet M., Roy C. C. Lithocholate cholestasis--sulfated glycolithocholate-induced intrahepatic cholestasis in rats. Gastroenterology. 1981 Feb;80(2):233–241. [PubMed] [Google Scholar]
  28. van Berge Henegouwen G. P., Hofmann A. F. Nocturnal gallbladder storage and emptying in gallstone patients and healthy subjects. Gastroenterology. 1978 Nov;75(5):879–885. [PubMed] [Google Scholar]
  29. van Berge-Henegouwen G. P., Allan R. N., Hofmann A. F., Yu P. Y. A facile hydrolysis-solvolysis procedure for conjugated bile acid sulfates. J Lipid Res. 1977 Jan;18(1):118–122. [PubMed] [Google Scholar]

Articles from Journal of Clinical Investigation are provided here courtesy of American Society for Clinical Investigation

RESOURCES