Skip to main content
The Journal of Clinical Investigation logoLink to The Journal of Clinical Investigation
. 1981 Dec;68(6):1387–1393. doi: 10.1172/JCI110389

Bone marrow transplantation only partially restores purine metabolites to normal in adenosine deaminase-deficient patients.

R Hirschhorn, V Roegner-Maniscalco, L Kuritsky, F S Rosen
PMCID: PMC370939  PMID: 7033281

Abstract

To delineate the extent to which bone marrow transplantation provides "enzyme replacement therapy", we have determined metabolite concentrations in two patients with adenosine deaminase (ADA) deficiency treated with bone marrow transplants and rendered immunologically normal. 10 yr after engraftment of lymphoid cells, erythrocyte deoxy ATP was markedly decreased compared to the marked elevations of deoxy ATP observed in untreated patients, but was still significantly elevated (62 and 90 vs. normal of 6.0 +/- 6.0 nmol/ml packed erythrocytes). Similarly, deoxyadenosine and adenosine excretion were both markedly diminished compared to that of untreated patients but deoxyadenosine excretion was still clearly increased (20.1 and 38.6 vs. normal of less than 0.2 nmol/mg creatinine) while adenosine excretion was in the upper range of normal (7.0 and 8.1 vs. normal of 5.6 +/- 3.6 nmol/mg creatinine). Mononuclear cell deoxy ATP content was also elevated compared to normal (5.25 and 14.4 vs. 1.2 +/- 0.3). Separated mononuclear cells of bone marrow transplanted patients contain both donor lymphocytes and recipient monocytes. When mononuclear cells were depleted of the cells enriched for donor lymphocytes (i.e. monocyte depleted) was lower than that of the mixed mononuclear cells (2.2 vs. 5.26). Surprisingly, plasma adenosine was as high as in untreated ADA-deficient patients (3.2 and 1.5 vs. untreated of 0.3-3 microM). Consistent with the elevated plasma adenosine and urinary deoxyadenosine, erythrocyte S-adenosyl homocysteine hydrolase activity was diminished (0.88 and 1.02 vs. normal of 5.64 +/- 0.25). Thus, bone marrow transplantation of ADA-deficient patients not only provides lymphoid stem cells, but also partially, albeit incompletely, clears abnormally increased metabolites from nonlymphoid body compartments.

Full text

PDF
1387

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Chen S. H., Ochs H. D., Scott C. R., Giblett E. R., Tingle A. J. Adenosine deaminase deficiency: disappearance of adenine deoxynucleotides from a patient's erythrocytes after successful marrow transplantation. J Clin Invest. 1978 Dec;62(6):1386–1389. doi: 10.1172/JCI109259. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Cohen A., Hirschhorn R., Horowitz S. D., Rubinstein A., Polmar S. H., Hong R., Martin D. W., Jr Deoxyadenosine triphosphate as a potentially toxic metabolite in adenosine deaminase deficiency. Proc Natl Acad Sci U S A. 1978 Jan;75(1):472–476. doi: 10.1073/pnas.75.1.472. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Coleman M. S., Donofrio J., Hutton J. J., Hahn L., Daoud A., Lampkin B., Dyminski J. Identification and quantitation of adenine deoxynucleotides in erythrocytes of a patient with adenosine deaminase deficiency and severe combined immunodeficiency. J Biol Chem. 1978 Mar 10;253(5):1619–1626. [PubMed] [Google Scholar]
  4. Coleman M. S., Hutton J. J. Micromethod for quantitation of adenosine deaminase activity in cells from human peripheral blood. Biochem Med. 1975 May;13(1):46–55. doi: 10.1016/0006-2944(75)90139-8. [DOI] [PubMed] [Google Scholar]
  5. Donofrio J., Coleman M. S., Hutton J. J., Daoud A., Lampkin B., Dyminski J. Overproduction of adenine deoxynucleosides and deoxynucletides in adenosine deaminase deficiency with severe combined immunodeficiency disease. J Clin Invest. 1978 Oct;62(4):884–887. doi: 10.1172/JCI109201. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Giblett E. R., Anderson J. E., Cohen F., Pollara B., Meuwissen H. J. Adenosine-deaminase deficiency in two patients with severely impaired cellular immunity. Lancet. 1972 Nov 18;2(7786):1067–1069. doi: 10.1016/s0140-6736(72)92345-8. [DOI] [PubMed] [Google Scholar]
  7. Green H., Chan T. Pyrimidine starvation induced by adenosine in fibroblasts and lymphoid cells: role of adenosine deaminase. Science. 1973 Nov 23;182(4114):836–837. doi: 10.1126/science.182.4114.836. [DOI] [PubMed] [Google Scholar]
  8. Hershfield M. S., Kredich N. M., Ownby D. R., Ownby H., Buckley R. In vivo inactivation of erythrocyte S-adenosylhomocysteine hydrolase by 2'-deoxyadenosine in adenosine deaminase-deficient patients. J Clin Invest. 1979 Apr;63(4):807–811. doi: 10.1172/JCI109367. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Hershfield M. S., Kredich N. M. Resistance of an adenosine kinase-deficient human lymphoblastoid cell line to effects of deoxyadenosine on growth, S-adenosylhomocysteine hydrolase inactivation, and dATP accumulation. Proc Natl Acad Sci U S A. 1980 Jul;77(7):4292–4296. doi: 10.1073/pnas.77.7.4292. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Hirschhorn R. Defects of purine metabolism in immunodeficiency diseases. Prog Clin Immunol. 1977;3:67–83. [PubMed] [Google Scholar]
  11. Hirschhorn R., Roegner V., Jenkins T., Seaman C., Piomelli S., Borkowsky W. Erythrocyte adenosine deaminase deficiency without immunodeficiency. Evidence for an unstable mutant enzyme. J Clin Invest. 1979 Oct;64(4):1130–1139. doi: 10.1172/JCI109552. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Hirschhorn R., Roegner V., Rubinstein A., Papageorgiou P. Plasma deoxyadenosine, adenosine, and erythrocyte deoxyATP are elevated at birth in an adenosine deaminase-deficient child. J Clin Invest. 1980 Mar;65(3):768–771. doi: 10.1172/JCI109725. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Hoffman J. L. Biosynthesis of S-N6-methyladenosylhomocysteine, an inhibitor of RNA methyltransferases. J Biol Chem. 1978 May 10;253(9):2905–2907. [PubMed] [Google Scholar]
  14. Khym J. X. An analytical system for rapid separation of tissue nucleotides at low pressures on conventional anion exchangers. Clin Chem. 1975 Aug;21(9):1245–1252. [PubMed] [Google Scholar]
  15. Lum C. T., Marz R., Plagemann P. G., Wohlhueter R. M. Adenosine transport and metabolism in mouse leukemia cells and in canine thymocytes and peripheral blood leukocytes. J Cell Physiol. 1979 Nov;101(2):173–200. doi: 10.1002/jcp.1041010202. [DOI] [PubMed] [Google Scholar]
  16. Marz R., Wohlhueter R. M., Plagemann P. G. Purine and pyrimidine transport and phosphoribosylation and their interaction in overall uptake by cultured mammalian cells. A re-evaluation. J Biol Chem. 1979 Apr 10;254(7):2329–2338. [PubMed] [Google Scholar]
  17. Meuwissen H. J., Pollara B., Pickering R. J. Combined immunodeficiency disease associated with adenosine deaminase deficiency. Report on a workshop held in Albany, New York, October 1, 1973. J Pediatr. 1975 Feb;86(2):169–181. doi: 10.1016/s0022-3476(75)80463-x. [DOI] [PubMed] [Google Scholar]
  18. Mills G. C., Schmalstieg F. C., Trimmer K. B., Goldman A. S., Goldblum R. M. Purine metabolism in adenosine deaminase deficiency. Proc Natl Acad Sci U S A. 1976 Aug;73(8):2867–2871. doi: 10.1073/pnas.73.8.2867. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. North T. W., Bestwick R. K., Mathews C. K. Detection of activities that interfere with the enzymatic assay of deoxyribonucleoside 5'-triphosphates. J Biol Chem. 1980 Jul 25;255(14):6640–6645. [PubMed] [Google Scholar]
  20. Parkman R., Gelfand E. W., Rosen F. S., Sanderson A., Hirschhorn R. Severe combined immunodeficiency and adenosine deaminase deficiency. N Engl J Med. 1975 Apr 3;292(14):714–719. doi: 10.1056/NEJM197504032921402. [DOI] [PubMed] [Google Scholar]
  21. Planet G., Fox I. H. Inhibition of phosphoribosylpyrophosphate synthesis by purine nucleosides in human erythrocytes. J Biol Chem. 1976 Oct 10;251(19):5839–5844. [PubMed] [Google Scholar]
  22. Polmar S. H., Stern R. C., Schwartz A. L., Wetzler E. M., Chase P. A., Hirschhorn R. Enzyme replacement therapy for adenosine deaminase deficiency and severe combined immunodeficiency. N Engl J Med. 1976 Dec 9;295(24):1337–1343. doi: 10.1056/NEJM197612092952402. [DOI] [PubMed] [Google Scholar]
  23. Schmalstieg F. C., Nelson J. A., Mills G. C., Monahan T. M., Goldman A. S., Goldblum R. M. Increased purine nucleotides in adenosine deaminase-deficient lymphocytes. J Pediatr. 1977 Jul;91(1):48–51. doi: 10.1016/s0022-3476(77)80442-3. [DOI] [PubMed] [Google Scholar]
  24. Schwartz A. L., Stern R. C., Polmar S. H. Demonstration of adenosine receptor on human lymphocytes in vitro and its possible role in the adenosine deaminase-deficient form of severe combined immunodeficiency. Clin Immunol Immunopathol. 1978 Apr;9(4):499–505. doi: 10.1016/0090-1229(78)90146-0. [DOI] [PubMed] [Google Scholar]
  25. Simmonds H. A., Sahota A., Potter C. F., Cameron J. S. Purine metabolism and immunodeficiency: urinary purine excretion as a diagnostic screening test in adenosine deaminase and purine nucleoside phosphorylase deficiency. Clin Sci Mol Med. 1978 May;54(5):579–584. doi: 10.1042/cs0540579. [DOI] [PubMed] [Google Scholar]
  26. Solter A. W., Handschumacher R. E. A rapid quantitative determination of deoxyribonucleoside triphosphates based on the enzymatic synthesis of DNA. Biochim Biophys Acta. 1969 Feb 18;174(2):585–590. doi: 10.1016/0005-2787(69)90288-3. [DOI] [PubMed] [Google Scholar]
  27. Wolberg G., Zimmerman T. P., Hiemstra K., Winston M., Chu L. C. Adenosine inhibition of lymphocyte-mediated cytolysis: possible role of cyclic adenosine monophosphate. Science. 1975 Mar 14;187(4180):957–959. doi: 10.1126/science.167434. [DOI] [PubMed] [Google Scholar]

Articles from Journal of Clinical Investigation are provided here courtesy of American Society for Clinical Investigation

RESOURCES