Abstract
The ability of 10 μM epinephrine or isoproterenol to stimulate cyclic AMP accumulation was decreased in hepatocytes isolated from hyperthyroid (triiodothyronine treated) as compared to euthyroid rats. In the presence of methylisobutylxanthine, epinephrine or isoproterenol-stimulated cyclic AMP accumulation was ∼65% lower in hyperthyroid as compared with euthyroid rat hepatocytes. The ability of glucagon to stimulate a cyclic AMP response was also decreased in the hyperthyroid state, when assayed in either the absence or presence of a methyl xanthine. The character of the catecholamine-stimulated cyclic AMP response was beta adrenergic in both the hyperand euthyroid states. No evidence for an alpha2 adrenergic mediated component of catecholamine action on cyclic AMP levels was noted. Cyclic AMP phosphodiesterase activity of hepatocyte homogenates was not altered in the hyperthyroid state. Hormone-stimulated, guanine nucleotide- and fluoride-activatable adenylate cyclase activity was reduced in subcellular fractions obtained from hyperthyroid as compared with euthyroid rat hepatocytes. Beta adrenergic receptor binding was reduced ∼35% and glucagon receptor binding reduced ∼50% in the hyperthyroid as compared with euthyroid rat hepatocyte membrane fractions. The status of the regulatory components of adenylate cyclase were examined by in vitro treatment of subcellular fractions with cholera toxin. The ability of cholera toxin to modulate adenylate cyclase was not altered by hyperthyroidism. Cholera toxin catalyzed AD[32P]ribosylation of hyperthyroid and euthyroid rat hepatocyte proteins separated electrophoretically displayed nearly identical autoradiograms. Studies of the reconstitution of adenylate cyclase activity of S49 mouse lymphoma cyc− mutant membranes by detergent extracts from rat hepatocyte membranes, indicated that hyperthyroidism was associated with a reduced capacity of regulatory components to confer fluoride, but not guanine nucleotide activatability to catalytic cyclase. Thyroid hormones regulate the hormone-sensitive adenylate cyclase system of rat hepatocytes at several distinct loci of the system.
Full text
PDF












Images in this article
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Aggerbeck M., Guellaen G., Hanoune J. The alpha-adrenergic mediated effect in rat liver. Correlation between [3H]-dihydroergocryptine binding to plasma membranes and glycogen phosphorylase activation in isolated hepatocytes. Biochem Pharmacol. 1980 Jun 15;29(12):1653–1662. doi: 10.1016/0006-2952(80)90120-3. [DOI] [PubMed] [Google Scholar]
- Armstrong K. J., Stouffer J. E., Van Inwegen R. G., Thompson W. J., Robison G. A. Effects of thyroid hormone deficiency on cyclic adenosine 3':5'-monophosphate and control of lipolysis in fat cells. J Biol Chem. 1974 Jul 10;249(13):4226–4231. [PubMed] [Google Scholar]
- Banerjee S. P., Kung L. S. beta-Adrenergic receptors in rat heart: effects of thyroidectomy. Eur J Pharmacol. 1977 May 15;43(2):207–208. doi: 10.1016/0014-2999(77)90134-0. [DOI] [PubMed] [Google Scholar]
- Berry M. N., Friend D. S. High-yield preparation of isolated rat liver parenchymal cells: a biochemical and fine structural study. J Cell Biol. 1969 Dec;43(3):506–520. doi: 10.1083/jcb.43.3.506. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Bilezikian J. P., Loeb J. N., Gammon D. E. The influence of hyperthyroidism and hypothyroidism on the beta-adrenergic responsiveness of the turkey erythrocyte. J Clin Invest. 1979 Feb;63(2):184–192. doi: 10.1172/JCI109288. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Brown B. L., Albano J. D., Ekins R. P., Sgherzi A. M. A simple and sensitive saturation assay method for the measurement of adenosine 3':5'-cyclic monophosphate. Biochem J. 1971 Feb;121(3):561–562. doi: 10.1042/bj1210561. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Cassel D., Pfeuffer T. Mechanism of cholera toxin action: covalent modification of the guanyl nucleotide-binding protein of the adenylate cyclase system. Proc Natl Acad Sci U S A. 1978 Jun;75(6):2669–2673. doi: 10.1073/pnas.75.6.2669. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Ciaraldi T., Marinetti G. V. Thyroxine and propylthiouracil effects of vivo on alpha and beta adrenergic receptors in rat heart. Biochem Biophys Res Commun. 1977 Feb 7;74(3):984–991. doi: 10.1016/0006-291x(77)91615-1. [DOI] [PubMed] [Google Scholar]
- Fain J. N., García-Sáinz J. A. Role of phosphatidylinositol turnover in alpha 1 and of adenylate cyclase inhibition in alpha 2 effects of catecholamines. Life Sci. 1980 Apr 14;26(15):1183–1194. doi: 10.1016/0024-3205(80)90062-4. [DOI] [PubMed] [Google Scholar]
- Gill D. M. Mechanism of action of cholera toxin. Adv Cyclic Nucleotide Res. 1977;8:85–118. [PubMed] [Google Scholar]
- Gill D. M., Meren R. ADP-ribosylation of membrane proteins catalyzed by cholera toxin: basis of the activation of adenylate cyclase. Proc Natl Acad Sci U S A. 1978 Jul;75(7):3050–3054. doi: 10.1073/pnas.75.7.3050. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Gilman A. G. A protein binding assay for adenosine 3':5'-cyclic monophosphate. Proc Natl Acad Sci U S A. 1970 Sep;67(1):305–312. doi: 10.1073/pnas.67.1.305. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Gumaa K. A., Hothersall J. S., Greenbaum A. L., McLean P. Thyroid hormone control of cyclic nucleotide phosphodiesterases and the regulation of the sensitivity of the liver to hormones. FEBS Lett. 1977 Aug 1;80(1):45–48. doi: 10.1016/0014-5793(77)80403-1. [DOI] [PubMed] [Google Scholar]
- Hoffman B. B., Michel T., Kilpatrick D. M., Lefkowitz R. J., Tolbert M. E., Gilman H., Fain J. N. Agonist versus antagonist binding to alpha-adrenergic receptors. Proc Natl Acad Sci U S A. 1980 Aug;77(8):4569–4573. doi: 10.1073/pnas.77.8.4569. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Hornbrook K. R., Cabral A. Enhancement by thyroid hormone treatment of norepinephrine-induced phosphorylase activation in the rat heart. Biochem Pharmacol. 1972 Apr 1;21(7):897–907. doi: 10.1016/0006-2952(72)90395-4. [DOI] [PubMed] [Google Scholar]
- Hudson T. H., Johnson G. L. Peptide mapping of adenylate cyclase regulatory proteins that are cholera toxin substrates. J Biol Chem. 1980 Aug 10;255(15):7480–7486. [PubMed] [Google Scholar]
- Jard S., Cantau B., Jakobs K. H. Angiotensin II and alpha-adrenergic agonists inhibit rat liver adenylate cyclase. J Biol Chem. 1981 Mar 25;256(6):2603–2606. [PubMed] [Google Scholar]
- Johnson G. L., Bourne H. R. Influence of cholera toxin on the regulation of adenylate cyclase by GTP. Biochem Biophys Res Commun. 1977 Sep 23;78(2):792–798. doi: 10.1016/0006-291x(77)90249-2. [DOI] [PubMed] [Google Scholar]
- Johnson G. L., Kaslow H. R., Bourne H. R. Genetic evidence that cholera toxin substrates are regulatory components of adenylate cyclase. J Biol Chem. 1978 Oct 25;253(20):7120–7123. [PubMed] [Google Scholar]
- Kaslow H. R., Johnson G. L., Brothers V. M., Bourne H. R. A regulatory component of adenylate cyclase from human erythrocyte membranes. J Biol Chem. 1980 Apr 25;255(8):3736–3741. [PubMed] [Google Scholar]
- LOWRY O. H., ROSEBROUGH N. J., FARR A. L., RANDALL R. J. Protein measurement with the Folin phenol reagent. J Biol Chem. 1951 Nov;193(1):265–275. [PubMed] [Google Scholar]
- Laemmli U. K. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature. 1970 Aug 15;227(5259):680–685. doi: 10.1038/227680a0. [DOI] [PubMed] [Google Scholar]
- Lin M. C., Wright D. E., Hruby V. J., Rodbell M. Structure-function relationships in glucagon: properties of highly purified des-His-1-, monoiodo-, and (des-Asn-28, Thr-29)(homoserine lactone-27)-glucagon. Biochemistry. 1975 Apr 22;14(8):1559–1563. doi: 10.1021/bi00679a002. [DOI] [PubMed] [Google Scholar]
- Malbon C. C., Gill D. M. ADP-ribosylation of membrane proteins and activation of adenylate cyclase by cholera toxin in fat cell ghosts from euthyroid and hypothyroid rats. Biochim Biophys Acta. 1979 Sep 3;586(3):518–527. doi: 10.1016/0304-4165(79)90042-4. [DOI] [PubMed] [Google Scholar]
- Malbon C. C., Gilman H. R., Fain J. N. Hormonal stimulation of cyclic AMP accumulation and glycogen phosphorylase activity in calcium-depleted hepatocytes from euthyroid and hypothyroid rats. Biochem J. 1980 Jun 15;188(3):593–599. doi: 10.1042/bj1880593. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Malbon C. C., Li S., Fain J. N. Hormonal activation of glycogen phosphorylase in hepatocytes from hypothyroid rats. J Biol Chem. 1978 Dec 25;253(24):8820–8825. [PubMed] [Google Scholar]
- Malbon C. C. Liver cell adenylate cyclase and beta-adrenergic receptors. Increased beta-adrenergic receptor number and responsiveness in the hypothyroid rat. J Biol Chem. 1980 Sep 25;255(18):8692–8699. [PubMed] [Google Scholar]
- Malbon C. C., LoPresti J. J. Hyperthyroidism impairs the activation of glycogen phosphorylase by epinephrine in rat hepatocytes. J Biol Chem. 1981 Dec 10;256(23):12199–12204. [PubMed] [Google Scholar]
- Malbon C. C., Moreno F. J., Cabelli R. J., Fain J. N. Fat cell adenylate cyclase and beta-adrenergic receptors in altered thyroid states. J Biol Chem. 1978 Feb 10;253(3):671–678. [PubMed] [Google Scholar]
- McNeill J. H., Brody T. M. The effect of triiodothyronine pretreatment on amine-induced rat cardiac phosphorylase activation. J Pharmacol Exp Ther. 1968 May;161(1):40–46. [PubMed] [Google Scholar]
- Moss J., Vaughan M. Mechanism of action of choleragen. Evidence for ADP-ribosyltransferase activity with arginine as an acceptor. J Biol Chem. 1977 Apr 10;252(7):2455–2457. [PubMed] [Google Scholar]
- Neville D. M., Jr Isolation of an organ specific protein antigen from cell-surface membrane of rat liver. Biochim Biophys Acta. 1968 Apr 9;154(3):540–552. doi: 10.1016/0005-2795(68)90014-7. [DOI] [PubMed] [Google Scholar]
- Pointon S. E., Banerjee S. P. beta-Adrenergic and muscarinic cholinergic receptors in rat submaxillary glands. Effects of thyroidectomy. Biochim Biophys Acta. 1979 Feb 19;583(1):129–132. doi: 10.1016/0304-4165(79)90317-9. [DOI] [PubMed] [Google Scholar]
- Preiksaitis H. G., Kunos G. Adrenoceptor-mediated activation of liver glycogen phosphorylase: effects of thyroid state. Life Sci. 1979 Jan 1;24(1):35–41. doi: 10.1016/0024-3205(79)90277-7. [DOI] [PubMed] [Google Scholar]
- Ross E. M., Gilman A. G. Biochemical properties of hormone-sensitive adenylate cyclase. Annu Rev Biochem. 1980;49:533–564. doi: 10.1146/annurev.bi.49.070180.002533. [DOI] [PubMed] [Google Scholar]
- Ross E. M., Gilman A. G. Reconstitution of catecholamine-sensitive adenylate cyclase activity: interactions of solubilized components with receptor-replete membranes. Proc Natl Acad Sci U S A. 1977 Sep;74(9):3715–3719. doi: 10.1073/pnas.74.9.3715. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Ross E. M., Howlett A. C., Ferguson K. M., Gilman A. G. Reconstitution of hormone-sensitive adenylate cyclase activity with resolved components of the enzyme. J Biol Chem. 1978 Sep 25;253(18):6401–6412. [PubMed] [Google Scholar]
- Salomon Y., Londos C., Rodbell M. A highly sensitive adenylate cyclase assay. Anal Biochem. 1974 Apr;58(2):541–548. doi: 10.1016/0003-2697(74)90222-x. [DOI] [PubMed] [Google Scholar]
- Sharma V. K., Banerjee S. P. beta-Adrenergic receptors in rat skeletal muscle. Effects of thyroidectomy. Biochim Biophys Acta. 1978 Apr 3;539(4):538–542. doi: 10.1016/0304-4165(78)90087-9. [DOI] [PubMed] [Google Scholar]
- Sperling M. A., Ganguli S., Voina S., Kaptein E., Nicoloff J. T. Modulation by thyroid status of the glucagon receptor-adenyl cyclase system in rat liver plasma membranes. Endocrinology. 1980 Sep;107(3):684–690. doi: 10.1210/endo-107-3-684. [DOI] [PubMed] [Google Scholar]
- Thompson W. J., Appleman M. M. Multiple cyclic nucleotide phosphodiesterase activities from rat brain. Biochemistry. 1971 Jan 19;10(2):311–316. [PubMed] [Google Scholar]
- Tsai J. S., Chen A. Effect of L-triiodothyronine on (--)3H-dihydroalprenolol binding and cyclic AMP response to (--)adrenaline in cultured heart cells. Nature. 1978 Sep 14;275(5676):138–140. doi: 10.1038/275138a0. [DOI] [PubMed] [Google Scholar]
- Van Inwegen R. G., Robison G. A., Thompson W. J. Cyclic nucleotide phosphodiesterases and thyroid hormones. J Biol Chem. 1975 Apr 10;250(7):2452–2456. [PubMed] [Google Scholar]
- Wildenthal K. Studies of fetal mouse hearts in organ culture: influence of prolonged exposure to triiodothyronine on cardiac responsiveness to isoproterenol, glucagon, theophylline, acetylcholine and dibutyryl cyclic 3',5'-adenosine monophosphate. J Pharmacol Exp Ther. 1974 Aug;190(2):272–279. [PubMed] [Google Scholar]
- Williams L. T., Lefkowitz R. J., Watanabe A. M., Hathaway D. R., Besch H. R., Jr Thyroid hormone regulation of beta-adrenergic receptor number. J Biol Chem. 1977 Apr 25;252(8):2787–2789. [PubMed] [Google Scholar]
- Wolfe B. B., Harden T. K., Molinoff P. B. beta-adrenergic receptors in rat liver: effects of adrenalectomy. Proc Natl Acad Sci U S A. 1976 Apr;73(4):1343–1347. doi: 10.1073/pnas.73.4.1343. [DOI] [PMC free article] [PubMed] [Google Scholar]



