Abstract
Although opioid peptides have been demonstrated immunohistochemically in the feline intestine, the action of these peptides is unknown. The aims of this study were: (a) to determine the distal ileal and ileocecal sphincter (ICS) responses to morphine sulfate (MS), methionine enkephalin (ME) and leucine enkephalin (LE); (b) to determine the mechanism by which exogenous opiates mediate these responses; (c) to determine the type of receptor involved in mediating these responses and (d) to ascertain whether endogenous opiate-mediated responses may be vagally induced. The ICS responded to all three opiate agonists with tonic and phasic contractions, the latter being associated with increased spike activity. The EDmax for ICS pressure response was 1 μg/kg for ME, 5 μg/kg for LE, and 150 μg/kg for MS. The distal ileum responded with increased spike activity and phasic contractions. The EDmax for the ileal motility index response was 1.0 × 10−1 μg/kg for ME, 1 μg/kg for LE, and 150 μg/kg for MS. Thus, both sites demonstrated similar dose-response relationships, both responding to at least 100 times lower doses of enkephalins than MS. The ICS contraction preceded ileal contractions. The ileal and ICS response was not antagonized by atropine, hexamethonium, phentolamine, propranolol, cinanserin, or tetrodotoxin. Naloxone, 600 μg/kg, antagonized the response to the enkephalins while 10 μg/kg antagonized the response to MS. Higher doses of the specific-receptor agonist SKF 10047 and κ-receptor agonist ketocyclazocine were required before a contractile response was elicited. Electrical stimulation of the cervical vagus induced ICS contraction and a fall in blood pressure. The ICS contractile response but not the blood pressure response was inhibited by naloxone 1 mg/kg. These data indicate: (a) tonic and phasic ICS contraction followed by ileal contraction may be mediated through δ-type opiate receptors located in the muscle membrane and (b) opiate-mediated ICS contraction may be induced during vagal stimulation.
Full text
PDF








Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Alumets J., Håkanson R., Sundler F., Chang K. J. Leu-enkephalin-like material in nerves and enterochromaffin cells in the gut. An immunohistochemical study. Histochemistry. 1978 Jul 12;56(3-4):187–196. doi: 10.1007/BF00495979. [DOI] [PubMed] [Google Scholar]
- Burks T. F. Acute effects of morphine on rat intestinal motility. Eur J Pharmacol. 1976 Dec;40(2):279–283. doi: 10.1016/0014-2999(76)90063-7. [DOI] [PubMed] [Google Scholar]
- Burks T. F., Long J. P. Release of intestinal 5-hydroxytryptamine by morphine and related agents. J Pharmacol Exp Ther. 1967 May;156(2):267–276. [PubMed] [Google Scholar]
- Creese I., Snyder S. H. Receptor binding and pharmacological activity of opiates in the guinea-pig intestine. J Pharmacol Exp Ther. 1975 Jul;194(1):205–219. [PubMed] [Google Scholar]
- DANIEL E. E., SUTHERLAND W. H., BOGOCH A. Effects of morphine and other drugs on motility of the terminal ileum. Gastroenterology. 1959 Apr;36(4):510–523. [PubMed] [Google Scholar]
- Edin R., Lundberg J., Terenius L., Dahlström A., Hökfelt T., Kewenter J., Ahlman H. Evidence for vagal enkephalinergic neural control of the feline pylorus and stomach. Gastroenterology. 1980 Mar;78(3):492–497. [PubMed] [Google Scholar]
- Guillemin R. Endorphins, brain peptides that act like opiates. N Engl J Med. 1977 Jan 27;296(4):226–228. doi: 10.1056/NEJM197701272960414. [DOI] [PubMed] [Google Scholar]
- Hambrook J. M., Morgan B. A., Rance M. J., Smith C. F. Mode of deactivation of the enkephalins by rat and human plasma and rat brain homogenates. Nature. 1976 Aug 26;262(5571):782–783. doi: 10.1038/262782a0. [DOI] [PubMed] [Google Scholar]
- Herz A., Schulz R., Wüster M. Some aspects of opiate receptors. Adv Biochem Psychopharmacol. 1980;21:329–337. [PubMed] [Google Scholar]
- Hughes J., Smith T. W., Kosterlitz H. W., Fothergill L. A., Morgan B. A., Morris H. R. Identification of two related pentapeptides from the brain with potent opiate agonist activity. Nature. 1975 Dec 18;258(5536):577–580. doi: 10.1038/258577a0. [DOI] [PubMed] [Google Scholar]
- Konturek S. J. Endogenous opiates and the digestive system. Scand J Gastroenterol. 1978;13(3):257–261. doi: 10.3109/00365527809179817. [DOI] [PubMed] [Google Scholar]
- Konturek S. J., Thor P., Król R., Dembiński A., Schally A. V. Influence of methionine-enkephalin and morphine on myoelectric activity of small bowel. Am J Physiol. 1980 Apr;238(4):G384–G389. doi: 10.1152/ajpgi.1980.238.4.G384. [DOI] [PubMed] [Google Scholar]
- Lord J. A., Waterfield A. A., Hughes J., Kosterlitz H. W. Endogenous opioid peptides: multiple agonists and receptors. Nature. 1977 Jun 9;267(5611):495–499. doi: 10.1038/267495a0. [DOI] [PubMed] [Google Scholar]
- Lundberg J. M., Hökfelt T., Kewenter J., Pettersson G., Ahlman H., Edin R., Dahlström A., Nilsson G., Terenius L., Uvnäs-Wallensten K. Substance P-, VIP-, and enkephalin-like immunoreactivity in the human vagus nerve. Gastroenterology. 1979 Sep;77(3):468–471. [PubMed] [Google Scholar]
- Meek J. L., Yang H. Y., Costa E. Enkephalin catabolism in vitro and in vivo. Neuropharmacology. 1977 Feb;16(2):151–154. doi: 10.1016/0028-3908(77)90064-8. [DOI] [PubMed] [Google Scholar]
- Miller R. J., Chang K. J., Cuatrecasas P. The metabolic stability of the enkephalins. Biochem Biophys Res Commun. 1977 Feb 21;74(4):1311–1317. doi: 10.1016/0006-291x(77)90585-x. [DOI] [PubMed] [Google Scholar]
- Northway M. G., Burks T. F. Indirect intestinal stimulatory effects of heroin: direct action on opiate receptors. Eur J Pharmacol. 1979 Nov 16;59(3-4):237–243. doi: 10.1016/0014-2999(79)90286-3. [DOI] [PubMed] [Google Scholar]
- Polak J. M., Bloom S. R., Sullivan S. N., Facer P., Pearse A. G. Enkephalin-like immunoreactivity in the human gastrointestinal tract. Lancet. 1977 May 7;1(8019):972–974. doi: 10.1016/s0140-6736(77)92277-2. [DOI] [PubMed] [Google Scholar]
- Pruitt D. B., Grubb M. N., Jaquette D. L., Burks T. F. Intestinal effects of 5-hydroxytryptamine and morphine in guinea pigs, dogs, cats and monkeys. Eur J Pharmacol. 1974 May;26(2):298–305. doi: 10.1016/0014-2999(74)90240-4. [DOI] [PubMed] [Google Scholar]
- Rinaldo J. A., Jr, Orinion E. A., Simpelo R. V., Check F. E., Beauregard W. Differential response of longitudinal and circular muscles of intact canine colon to morphine and bethanechol. Gastroenterology. 1971 Mar;60(3):438–444. [PubMed] [Google Scholar]
- Rubin M. R., Cardwell B. A., Ouyang A., Snape W. J., Jr, Cohen S. Effect of bethanechol or vagal nerve stimulation on ileocecal sphincter pressure in the cat. Gastroenterology. 1981 May;80(5 Pt 1):974–979. [PubMed] [Google Scholar]
- Rubin M. R., Fournet J., Snape W. J., Jr, Cohen S. Adrenergic regulation of ileocecal sphincter function in the cat. Gastroenterology. 1980 Jan;78(1):15–21. [PubMed] [Google Scholar]
- Schulz R., Wüster M., Herz A. Centrally and peripherally mediated inhibition of intestinal motility by opioids. Naunyn Schmiedebergs Arch Pharmacol. 1979 Sep;308(3):255–260. doi: 10.1007/BF00501390. [DOI] [PubMed] [Google Scholar]
- Smith A. P., Loh H. H. Heterogeneity of opiate-receptor interaction. Pharmacology. 1980;20(2):57–63. doi: 10.1159/000137346. [DOI] [PubMed] [Google Scholar]
- Snyder S. H., Simantov R. The opiate receptor and opoid peptides. J Neurochem. 1977 Jan;28(1):13–20. doi: 10.1111/j.1471-4159.1977.tb07703.x. [DOI] [PubMed] [Google Scholar]
- Stewart J. J., Weisbrodt N. W., Burks T. F. Central and peripheral actions of morphine on intestinal transit. J Pharmacol Exp Ther. 1978 Jun;205(3):547–555. [PubMed] [Google Scholar]
- Uddman R., Alumets J., Håkanson R., Sundler F., Walles B. Peptidergic (enkephalin) innervation of the mammalian esophagus. Gastroenterology. 1980 Apr;78(4):732–737. [PubMed] [Google Scholar]
- Weisbrodt N. W., Christensen J. Electrical activity of the cat duodenum in fasting and vomiting. Gastroenterology. 1972 Dec;63(6):1004–1010. [PubMed] [Google Scholar]
