Abstract
Recent reports have suggested that opioid peptides may be involved in renal water excretion. The present in vivo experiments, therefore, were undertaken to determine the effect of opioid peptides on the osmotic and nonosmotic release of arginine vasopressin (AVP) in the conscious rat. Experimental animals were infused intravenously with naloxone (20 μg/kg per min) or oxilorphan (40 μg/kg per min), chemically dissimilar opioid antagonists. Control rats were infused with normal saline, the vehicle for the opioid antagonists. In all three groups the osmotic release of AVP was examined during an acute hypertonic saline (3%) infusion (2 ml/100 g body wt). The antidiuresis following the hypertonic saline infusion was significantly attenuated in naloxone- and oxilorphan-treated rats, as the peak urinary osmolality (Uosm) rose to 581.4±22.4 and 558.2±27.6 mosmol/kg H2O in naloxone- and oxilorphan-treated rats as compared with the value in control rats of 735.3±24.2 mosmol/kg H2O (both P < 0.001 vs. control). At the same time the plasma AVP levels of 5.4±1.3 and 5.2±1.1 pg/ml in naloxone- and oxilorphan-treated rats, respectively, were significantly lower than the plasma AVP in control rats of 16.9±2.5 pg/ml (P < 0.001). In another three groups of rats the nonosmotic release of AVP was examined during hypovolemia induced by intraperitoneal 6% dextran (1.8 ml/100 g body wt). Following intraperitoneal administration of dextran the peak Uosm of 703.0±87.8 and 734.8±99.1 mosmol/kg H2O in naloxone- and oxilorphan-treated rats, respectively, was significantly less than the value in control rats of 1,169.3±135.5 mosmol/kg H2O (both P < 0.02 vs. control). A comparable decrease in blood volume of 13% occurred in all three groups of animals. During the dextran administration plasma AVP levels in naloxone- and oxilorphan-treated rats increased to 4.3±1.0 and 6.0±2.0 pg/ml, respectively; both of these values were significantly lower than the plasma AVP of 12.9±1.4 pg/ml in control rats (P < 0.02). The effect of opioid antagonists to impair the osmotic and nonosmotic release of AVP occurred in the absence of differences in mean arterial pressure, glomerular filtration rate and the renal response to AVP. These results, therefore, indicate that opioid peptides are involved in renal water excretion primarily by modulating the central release of AVP.
Full text
PDF






Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Anderson R. J., Pluss R. G., Berns A. S., Jackson J. T., Arnold P. E., Schrier R. W., McDonald K. E. Mechanism of effect of hypoxia on renal water excretion. J Clin Invest. 1978 Oct;62(4):769–777. doi: 10.1172/JCI109188. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Aziz L. A., Forsling M. L., Woolf C. J. The effect of intracerebroventricular injections of morphine on vasopressin release in the rat. J Physiol. 1981 Feb;311:401–409. doi: 10.1113/jphysiol.1981.sp013592. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Baertschi A. J., Zingg H. H., Dreifuss J. J. Enkephalins, substance P, bradykinin and angiotensin II: differential sites of action on the hypothalamo-neurohypophysial system. Brain Res. 1981 Sep 7;220(1):107–119. doi: 10.1016/0006-8993(81)90214-6. [DOI] [PubMed] [Google Scholar]
- Bisset G. W., Chowdrey H. S., Feldberg W. Release of vasopressin by enkephalin. Br J Pharmacol. 1978 Mar;62(3):370–371. doi: 10.1111/j.1476-5381.1978.tb08472.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Grossman A., Besser G. M., Milles J. J., Baylis P. H. Inhibition of vasopressin release in man by an opiate peptide. Lancet. 1980 Nov 22;2(8204):1108–1110. doi: 10.1016/s0140-6736(80)92542-8. [DOI] [PubMed] [Google Scholar]
- Huidobro F., Huidobro-Toro J. Antidiuretic effect of morphine and vasopressin in morphine tolerant and non-tolerant rats, differential effects on urine composition. Eur J Pharmacol. 1979 Oct 26;59(1-2):55–64. doi: 10.1016/0014-2999(79)90024-4. [DOI] [PubMed] [Google Scholar]
- Inturrisi C. E., Fujimoto J. M. Studies on the antidiuretic action of morphine in the rat. Eur J Pharmacol. 1968 Feb;2(4):301–307. doi: 10.1016/0014-2999(68)90081-2. [DOI] [PubMed] [Google Scholar]
- Iversen L. L., Iversen S. D., Bloom F. E. Opiate receptors influence vasopressin release from nerve terminals in rat neurohypophysis. Nature. 1980 Mar 27;284(5754):350–351. doi: 10.1038/284350a0. [DOI] [PubMed] [Google Scholar]
- Lightman S. L., Forsling M. L. Evidence for endogenous opioid control of vasopressin release in man. J Clin Endocrinol Metab. 1980 Mar;50(3):569–571. doi: 10.1210/jcem-50-3-569. [DOI] [PubMed] [Google Scholar]
- Lightman S. L., Langdon N., Forsling M. L. Effects of the opiate antagonist naloxone and the enkephalin analog DAMME on the vasopressin response to a hypertonic stimulus in man. J Clin Endocrinol Metab. 1980 Dec;51(6):1447–1449. doi: 10.1210/jcem-51-6-1447. [DOI] [PubMed] [Google Scholar]
- Miller M. Inhibition of ADH release in the rat by narcotic antagonists. Neuroendocrinology. 1975;19(3):241–251. doi: 10.1159/000122444. [DOI] [PubMed] [Google Scholar]
- Miller M. Role of endogenous opioids in neurohypophysial function of man. J Clin Endocrinol Metab. 1980 Jun;50(6):1016–1020. doi: 10.1210/jcem-50-6-1016. [DOI] [PubMed] [Google Scholar]
- Miller T. R., Handelman W. A., Arnold P. E., McDonald K. M., Molinoff P. B., Schrier R. W. Effect of central catecholamine depletion on the osmotic and nonosmotic stimulation of vasopressin (antidiuretic hormone) in the rat. J Clin Invest. 1979 Dec;64(6):1599–1607. doi: 10.1172/JCI109621. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Muehlethaler M., Gaehwiler B. H., Dreifuss J. J. Enkephalin-induced inhibition of hypothalmaic paraventricular neurons. Brain Res. 1980 Sep 15;197(1):264–268. doi: 10.1016/0006-8993(80)90457-6. [DOI] [PubMed] [Google Scholar]
- Nakanishi S., Inoue A., Kita T., Nakamura M., Chang A. C., Cohen S. N., Numa S. Nucleotide sequence of cloned cDNA for bovine corticotropin-beta-lipotropin precursor. Nature. 1979 Mar 29;278(5703):423–427. doi: 10.1038/278423a0. [DOI] [PubMed] [Google Scholar]
- Nakanishi S., Teranishi Y., Noda M., Notake M., Watanabe Y., Kakidani H., Jingami H., Numa S. The protein-coding sequence of the bovine ACTH-beta-LPH precursor gene is split near the signal peptide region. Nature. 1980 Oct 23;287(5784):752–755. doi: 10.1038/287752a0. [DOI] [PubMed] [Google Scholar]
- Nutt J. F., Jasinski D. R. Diuretic action of the narcotic antagonist oxilorphan. Clin Pharmacol Ther. 1974 Apr;15(4):361–367. doi: 10.1002/cpt1974154361. [DOI] [PubMed] [Google Scholar]
- Perry D. C., Mullis K. B., Oie S., Sadée W. Opiate antagonist receptor binding in vivo: evidence for a new receptor binding model. Brain Res. 1980 Oct 13;199(1):49–61. doi: 10.1016/0006-8993(80)90229-2. [DOI] [PubMed] [Google Scholar]
- Reaves T. A., Jr, Hayward J. N. Immunocytochemical identification of enkephalinergic neurons in the hypothalamic magnocellular preoptic nucleus of the goldfish, Carassius auratus. Cell Tissue Res. 1979 Aug 3;200(1):147–151. doi: 10.1007/BF00236894. [DOI] [PubMed] [Google Scholar]
- Reaves T. A., Jr, Hayward J. N. Intracellular dye-marked enkephalin neurons in the magnocellular preoptic nucleus of the goldfish hypothalamus. Proc Natl Acad Sci U S A. 1979 Nov;76(11):6009–6011. doi: 10.1073/pnas.76.11.6009. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Robertson G. L., Mahr E. A., Athar S., Sinha T. Development and clinical application of a new method for the radioimmunoassay of arginine vasopressin in human plasma. J Clin Invest. 1973 Sep;52(9):2340–2352. doi: 10.1172/JCI107423. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Rossier J., Battenberg E., Pittman Q., Bayon A., Koda L., Miller R., Guillemin R., Bloom F. Hypothalamic enkephalin neurones may regulate the neurohypophysis. Nature. 1979 Feb 22;277(5698):653–655. doi: 10.1038/277653a0. [DOI] [PubMed] [Google Scholar]
- Rossier J., Bloom F. Central neuropharmacology of endorphins. Adv Biochem Psychopharmacol. 1979;20:165–185. [PubMed] [Google Scholar]
- Rossier J., Pittman Q., Bloom F., Guillemin R. Distribution of opioid peptides in the pituitary: a new hypothalamic-pars nervosa enkephalinergic pathway. Fed Proc. 1980 Jun;39(8):2555–2560. [PubMed] [Google Scholar]
- Rossier J., Vargo T. M., Minick S., Ling N., Bloom F. E., Guillemin R. Regional dissociation of beta-endorphin and enkephalin contents in rat brain and pituitary. Proc Natl Acad Sci U S A. 1977 Nov;74(11):5162–5165. doi: 10.1073/pnas.74.11.5162. [DOI] [PMC free article] [PubMed] [Google Scholar]
- SCHNIEDEN H., BLACKMORE E. K. The effect of nalorphine on the antidiuretic action of morphine in rats and men. Br J Pharmacol Chemother. 1955 Mar;10(1):45–50. doi: 10.1111/j.1476-5381.1955.tb00058.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Schrier R. W., Berl T., Anderson R. J. Osmotic and nonosmotic control of vasopressin release. Am J Physiol. 1979 Apr;236(4):F321–F332. doi: 10.1152/ajprenal.1979.236.4.F321. [DOI] [PubMed] [Google Scholar]
- Simantov R., Snyder S. H. Opiate receptor binding in the pituitary gland. Brain Res. 1977 Mar 18;124(1):178–184. doi: 10.1016/0006-8993(77)90877-0. [DOI] [PubMed] [Google Scholar]
- Thrasher T. N., Brown C. J., Keil L. C., Ramsay D. J. Thirst and vasopressin release in the dog: an osmoreceptor or sodium receptor mechanism? Am J Physiol. 1980 May;238(5):R333–R339. doi: 10.1152/ajpregu.1980.238.5.R333. [DOI] [PubMed] [Google Scholar]
- Weitzman R. E., Fisher D. A., Minick S., Ling N., Guillemin R. beta-Endorphin secretion of arginine vasopressin in vivo. Endocrinology. 1977 Nov;101(5):1643–1646. doi: 10.1210/endo-101-5-1643. [DOI] [PubMed] [Google Scholar]
