Abstract
Using the isolated perfused canine tibia we examined the extraction of [3H]25(OH)D3, [3H]1,25(OH)2D3 and [3H]24,25(OH)2D3 by bone of normal adult dogs. The studies were performed with and without vitamin D binding protein (DBP) in the perfusate to examine the effect of protein binding on the extraction of the vitamin D metabolites. An average of 48±2% of [3H]25(OH)D3 was extracted by bone, when no DBP was present. However, addition of only a small amount of DBP (∼720 ng/ml of perfusate) nearly completely abolished the extraction of [3H]25(OH)D3 by bone. No degradation and/or transformation of the labeled 25(OH)D3 could be demonstrated during passage through the isolated perfused bone. The extraction of [3H]24,25(OH)2D3 in a DBP-free medium averaged 33±5%. Addition of 720 ng of DBP/ml of perfusate completely inhibited the extraction of this metabolite. The extraction of [3H]1,25(OH)2D3 averaged 30±3% in a DBP free medium and no inhibition of the extraction was demonstrated after addition of DBP (720 ng/ml of perfusate). However, addition of DBP in a concentration of 14.4 μg/ml of perfusate reduced the extraction of 1,25(OH)2D3 to 8±2%, a value still significantly higher than that seen after addition of 20 times less DBP to perfusions with 25(OH)D3 and 24,25(OH)2D3. It is concluded that the isolated perfused bone of normal dogs can extract significant amounts of 25(OH)D3, 1,25(OH)2D3, and 24,25(OH)2D3. Small concentrations of DBP (720 ng/ml) in the perfusate significantly inhibited the extraction of 25(OH)D3 and 24,25(OH)2D3. A carrier role for DBP is suggested and it is proposed that the levels of free vitamin D are important for extraction of the metabolites by bone. Therefore, due to the different affinities of DBP for the various metabolites of vitamin D, only 1,25(OH)2D3 is extracted in vitro in significant amounts by bone of normal adult dogs, in the presence of DBP.
Full text
PDF






Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- BLIGH E. G., DYER W. J. A rapid method of total lipid extraction and purification. Can J Biochem Physiol. 1959 Aug;37(8):911–917. doi: 10.1139/o59-099. [DOI] [PubMed] [Google Scholar]
- Bordier P., Rasmussen H., Marie P., Miravet L., Gueris J., Ryckwaert A. Vitamin D metabolites and bone mineralization in man. J Clin Endocrinol Metab. 1978 Feb;46(2):284–294. doi: 10.1210/jcem-46-2-284. [DOI] [PubMed] [Google Scholar]
- Bouillon R., Van Assche F. A., Van Baelen H., Heyns W., De Moor P. Influence of the vitamin D-binding protein on the serum concentration of 1,25-dihydroxyvitamin D3. Significance of the free 1,25-dihydroxyvitamin D3 concentration. J Clin Invest. 1981 Mar;67(3):589–596. doi: 10.1172/JCI110072. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Bouillon R., van Baelen H., de Moor P. Comparative study of the affinity of the serum vitamin D-binding protein. J Steroid Biochem. 1980 Sep;13(9):1029–1034. doi: 10.1016/0022-4731(80)90133-8. [DOI] [PubMed] [Google Scholar]
- Bouillon R., van Baelen H., de Moor P. The measurement of the vitamin D-binding protein in human serum. J Clin Endocrinol Metab. 1977 Aug;45(2):225–231. doi: 10.1210/jcem-45-2-225. [DOI] [PubMed] [Google Scholar]
- Canterbury J. M., Lerman S., Claflin A. J., Henry H., Norman A., Reiss E. Inhibition of parathyroid hormone secretion by 25-hydroxycholecalciferol and 24,25-dihydroxycholecalciferol in the dog. J Clin Invest. 1978 May;61(5):1375–1383. doi: 10.1172/JCI109055. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Colston K., Hirt M., Feldman D. Organ distribution of the cytoplasmic 1,25-dihydroxycholecalciferol receptor in various mouse tissues. Endocrinology. 1980 Dec;107(6):1916–1922. doi: 10.1210/endo-107-6-1916. [DOI] [PubMed] [Google Scholar]
- Cooke N. E., Walgate J., Haddad J. G., Jr Human serum binding protein for vitamin D and its metabolites. II. Specific, high affinity association with a protein in nucleated tissue. J Biol Chem. 1979 Jul 10;254(13):5965–5971. [PubMed] [Google Scholar]
- Dietel M., Dorn G., Montz R., Altenähr E. Influence of vitamin D3, 1,25-dihydroxyvitamin D3, and 24,25-dihydroxyvitamin D3 on parathyroid hormone secretion, adenosine 3',5'-monophosphate release, and ultrastructure of parathyroid glands in organ culture. Endocrinology. 1979 Jul;105(1):237–245. doi: 10.1210/endo-105-1-237. [DOI] [PubMed] [Google Scholar]
- Fournier A., Bordier P., Gueris J., Sebert J. L., Marie P., Ferrière C., Bedrossian J., DeLuca H. F. Comparison of 1 alpha-hydroxycholecalciferol and 25-hydroxycholecalciferol in the treatment of renal osteodystrophy: greater effect of 25-hydroxycholecalciferol on bone mineralization. Kidney Int. 1979 Feb;15(2):196–204. doi: 10.1038/ki.1979.25. [DOI] [PubMed] [Google Scholar]
- Garabedian M., Lieberherr M., N'Guyen T. M., Corvol M. T., Du Bois M. B., Balsan S. The in vitro production and activity of 24, 25-dihydroxycholecalciferol in cartilage and calvarium. Clin Orthop Relat Res. 1978 Sep;(135):241–248. [PubMed] [Google Scholar]
- Haddad J. G., Fraser D. R., Lawson D. E. Vitamin D plasma binding protein. Turnover and fate in the rabbit. J Clin Invest. 1981 May;67(5):1550–1560. doi: 10.1172/JCI110186. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Haddad J. G., Jr, Rojanasathit S. Acute administration of 25-hydroxycholecalciferol in man. J Clin Endocrinol Metab. 1976 Feb;42(2):284–290. doi: 10.1210/jcem-42-2-284. [DOI] [PubMed] [Google Scholar]
- Haddad J. G., Jr, Walgate J. 25-Hydroxyvitamin D transport in human plasma. Isolation and partial characterization of calcifidiol-binding protein. J Biol Chem. 1976 Aug 25;251(16):4803–4809. [PubMed] [Google Scholar]
- Henry H. L., Taylor A. N., Norman A. W. Response of chick parathyroid glands to the vitamin D metabolites, 1,25-dihydroxycholecalciferol and 24,25-dihydroxycholecalciferol. J Nutr. 1977 Oct;107(10):1918–1926. doi: 10.1093/jn/107.10.1918. [DOI] [PubMed] [Google Scholar]
- Kream B. E., Jose M., Yamada S., DeLuca H. F. A specific high-affinity binding macromolecule for 1,25-dihydroxyvitamin D3 in fetal bone. Science. 1977 Sep 9;197(4308):1086–1088. doi: 10.1126/science.887939. [DOI] [PubMed] [Google Scholar]
- Manolagas S. C., Taylor C. M., Anderson D. C. Highly specific binding of 1,25-dihydroxycholecalciferol in bone cytosol. J Endocrinol. 1979 Jan;80(1):35–39. doi: 10.1677/joe.0.0800035. [DOI] [PubMed] [Google Scholar]
- Martin K. J., Freitag J. J., Conrades M. B., Hruska K. A., Klahr S., Slatopolsky E. Selective uptake of the synthetic amino terminal fragment of bovine parathyroid hormone by isolated perfused bone. J Clin Invest. 1978 Aug;62(2):256–261. doi: 10.1172/JCI109124. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Mellow A. M., Stosich G. V., Stern P. H. Dissociation of specific binding of 25-OH-D3 and resorption in fetal rat bones. Mol Cell Endocrinol. 1978 Apr;10(2):149–158. doi: 10.1016/0303-7207(78)90121-1. [DOI] [PubMed] [Google Scholar]
- Miyachi Y., Vaitukaitis J. L., Nieschlag E., Lipsett M. B. Enzymatic radioiodination of gonadotropins. J Clin Endocrinol Metab. 1972 Jan;34(1):23–28. doi: 10.1210/jcem-34-1-23. [DOI] [PubMed] [Google Scholar]
- Weber J. C., Pons V., Kodicek E. The localization of 1,25-dihydroxycholecalciferol in bone cell nuclei of rachitic chicks. Biochem J. 1971 Nov;125(1):147–153. doi: 10.1042/bj1250147. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Wecksler W. R., Norman A. W. Biochemical properties of 1 alpha, 25-dihydroxyvitamin D receptors. J Steroid Biochem. 1980 Aug;13(8):977–989. doi: 10.1016/0022-4731(80)90173-9. [DOI] [PubMed] [Google Scholar]
- Witmer G., Margolis A., Fontaine O., Fritsch J., Lenoir G., Broyer M., Balsan S. Effects of 25-hydroxycholecalciferol on bone lesions of children with terminal renal failure. Kidney Int. 1976 Nov;10(5):395–408. doi: 10.1038/ki.1976.125. [DOI] [PubMed] [Google Scholar]
