Skip to main content
The Journal of Clinical Investigation logoLink to The Journal of Clinical Investigation
. 1982 Mar;69(3):700–705. doi: 10.1172/JCI110498

Direct recordings of the temperatures in the tracheobronchial tree in normal man.

E R McFadden Jr, D M Denison, J F Waller, B Assoufi, A Peacock, T Sopwith
PMCID: PMC371028  PMID: 7061708

Abstract

In an effect to determine how far inspired air could penetrate into the respiratory tract before being brought to body conditions, we measured the temperature in the airways of the anterior basilar segment of the right lower lobe in five normal subjects while they breathed air at subfreezing and ambient conditions. During quiet breathing, most of the heating of the incoming gas took place in the upper airways as expected. However, as the thermal burden was increased by rapid inspirations, frigid air, and hyperventilation, the temperature of the distal airways progressively fell and the point at which the incoming air reached body conditions moved deep into the periphery of the lung. These findings demonstrate that heat and water transfer is not localized to one region, but rather is a continuous process that begins the moment the air enters the body and involves as much of the respiratory tract as necessary to complete the task.

Full text

PDF
700

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Breslin F. J., McFadden E. R., Jr, Ingram R. H., Jr, Deal E. C., Jr Effects of atropine on respiratory heat loss in asthma. J Appl Physiol Respir Environ Exerc Physiol. 1980 Apr;48(4):619–623. doi: 10.1152/jappl.1980.48.4.619. [DOI] [PubMed] [Google Scholar]
  2. COLE P. Further observations on the conditioning of respiratory air. J Laryngol Otol. 1953 Nov;67(11):669–681. doi: 10.1017/s0022215100049161. [DOI] [PubMed] [Google Scholar]
  3. COLE P. Recordings of respiratory air temperature. J Laryngol Otol. 1954 May;68(5):295–307. doi: 10.1017/s0022215100049690. [DOI] [PubMed] [Google Scholar]
  4. CRANSTON W. I., GERBRANDY J., SNELL E. S. Oral, rectal and oesophageal temperatures and some factors affecting them in man. J Physiol. 1954 Nov 29;126(2):347–358. doi: 10.1113/jphysiol.1954.sp005214. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Deal E. C., Jr, McFadden E. R., Jr, Ingram R. H., Jr, Jaeger J. J. Effects of atropine on potentiation of exercise-induced bronchospasm by cold air. J Appl Physiol Respir Environ Exerc Physiol. 1978 Aug;45(2):238–243. doi: 10.1152/jappl.1978.45.2.238. [DOI] [PubMed] [Google Scholar]
  6. Deal E. C., Jr, McFadden E. R., Jr, Ingram R. H., Jr, Jaeger J. J. Esophageal temperature during exercise in asthmatic and nonasthmatic subjects. J Appl Physiol Respir Environ Exerc Physiol. 1979 Mar;46(3):484–490. doi: 10.1152/jappl.1979.46.3.484. [DOI] [PubMed] [Google Scholar]
  7. Deal E. C., Jr, McFadden E. R., Jr, Ingram R. H., Jr, Jaeger J. J. Hyperpnea and heat flux: initial reaction sequence in exercise-induced asthma. J Appl Physiol Respir Environ Exerc Physiol. 1979 Mar;46(3):476–483. doi: 10.1152/jappl.1979.46.3.476. [DOI] [PubMed] [Google Scholar]
  8. Deal E. C., Jr, McFadden E. R., Jr, Ingram R. H., Jr, Strauss R. H., Jaeger J. J. Role of respiratory heat exchange in production of exercise-induced asthma. J Appl Physiol Respir Environ Exerc Physiol. 1979 Mar;46(3):467–475. doi: 10.1152/jappl.1979.46.3.467. [DOI] [PubMed] [Google Scholar]
  9. Denison D. M., Davies N. J., Meyer M., Pierce R. J., Scheid P. Single-exhalation method for study of lobar and segmental lung function by mass spectrometry in man. Respir Physiol. 1980 Nov;42(2):87–99. doi: 10.1016/0034-5687(80)90106-1. [DOI] [PubMed] [Google Scholar]
  10. HOUDAS Y., MARTIN-LALANDE J., COLIN J. ESSAI D''EVALUATION DE LA TEMPERATURE DES GAZ ALV'EOLAIRES. J Physiol (Paris) 1964 Jul-Aug;56:683–691. [PubMed] [Google Scholar]
  11. INGELSTEDT S. Studies on the conditioning of air in the respiratory tract. Acta Otolaryngol Suppl. 1956;131:1–80. [PubMed] [Google Scholar]
  12. O'Cain C. F., Dowling N. B., Slutsky A. S., Hensley M. J., Strohl K. P., McFadden E. R., Jr, Ingram R. H., Jr Airway effects of respiratory heat loss in normal subjects. J Appl Physiol Respir Environ Exerc Physiol. 1980 Nov;49(5):875–880. doi: 10.1152/jappl.1980.49.5.875. [DOI] [PubMed] [Google Scholar]
  13. PROETZ A. W. Air currents in the upper respiratory tract and their clinical importance. Ann Otol Rhinol Laryngol. 1951 Jun;60(2):439–467. doi: 10.1177/000348945106000216. [DOI] [PubMed] [Google Scholar]
  14. Schroter R. C., Sudlow M. F. Flow patterns in models of the human bronchial airways. Respir Physiol. 1969 Oct;7(3):341–355. doi: 10.1016/0034-5687(69)90018-8. [DOI] [PubMed] [Google Scholar]
  15. Strauss R. H., McFadden E. R., Jr, Ingram R. H., Jr, Deal E. C., Jr, Jaeger J. J. Influence of heat and humidity on the airway obstruction induced by exercise in asthma. J Clin Invest. 1978 Feb;61(2):433–440. doi: 10.1172/JCI108954. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. VERZAR F., KEITH J., PARCHET V. Temperatur und Feuchtigkeit der Luft in den Atemwegen. Pflugers Arch. 1953;257(5):400–416. doi: 10.1007/BF00364367. [DOI] [PubMed] [Google Scholar]
  17. WEBB P. Air temperatures in respiratory tracts of resing subjects in cold. J Appl Physiol. 1951 Nov;4(5):378–382. doi: 10.1152/jappl.1951.4.5.378. [DOI] [PubMed] [Google Scholar]

Articles from Journal of Clinical Investigation are provided here courtesy of American Society for Clinical Investigation

RESOURCES