Skip to main content
SpringerPlus logoLink to SpringerPlus
. 2013 Jul 4;2:301. doi: 10.1186/2193-1801-2-301

What makes cancer stem cell markers different?

Uwe Karsten 1,, Steffen Goletz 1
PMCID: PMC3710573  PMID: 23888272

Abstract

Since the cancer stem cell concept has been widely accepted, several strategies have been proposed to attack cancer stem cells (CSC). Accordingly, stem cell markers are now preferred therapeutic targets. However, the problem of tumor specificity has not disappeared but shifted to another question: how can cancer stem cells be distinguished from normal stem cells, or more specifically, how do CSC markers differ from normal stem cell markers? A hypothesis is proposed which might help to solve this problem in at least a subgroup of stem cell markers. Glycosylation may provide the key.

Keywords: Stem cells, Cancer stem cells, Glycosylation, Thomsen-Friedenreich antigen, Therapeutic targets

Background

The cancer stem cell hypothesis (Reya et al. 2001; Al-Hajj et al. 2003; Dalerba et al. 2007; Lobo et al. 2007) proposes that tumors - analogous to normal tissues (Blanpain and Fuchs 2006) - grow and develop from a distinct subpopulation of cells named “cancer stem cells” or “cancer-initiating cells”. Stem cells are able to manage, by asymmetric cell division, two conflicting tasks, self-renewal on the one hand, and (restricted) proliferation and differentiation on the other hand. Cancer stem cells (CSC) are thought to be transformed stem or progenitor cells with novel properties such as enhanced proliferation, enhanced mobility and limited ability for differentiation.

Cancer stem cells differ considerably from the majority of cells of the tumor mass. It is assumed that the unlimited growth capacity of the tumor as well as the capability to develop metastases rest on the CSC population. Cancer stem cells divide relatively slowly and are essentially drug-resistant, two properties which make them refractory to conventional chemotherapy. The acceptance of the CSC concept therefore demands re-evaluation and potentially re-direction of cancer therapies: instead of trying solely to reduce the tumor mass, the CSC subset should be specifically targeted. This aim implies the need to search for CSC-specific therapeutic target marker molecules. Cancer stem cells are, however, in many aspects very similar to normal stem cells. They apparently express the same markers as normal stem cells. Therapies aimed at cancer stem cells therefore have a new problem: how to target cancer stem cells and leave normal stem cells intact? Or, in other words, how can CSC markers be distinguished from markers of normal stem cells?

Stem cell markers

In recent years considerable effort has been invested in the detection and characterization of stem cell markers. The result is that there are now an overwhelming and steadily increasing number of such marker molecules. Some markers are indeed more or less specific for different types of stem cells, for example, markers that differentiate embryonic from adult stem cells or pluripotent from progenitor cells. With the exception of pluripotent embryonic stem cells all other stem cells carry, in addition, lineage-specific markers. Stem cells are also defined by the absence of certain markers. Contemplating these data, several questions arise. First, as already mentioned, almost all markers of normal stem cells are also found on cancer stem cells. Examples are shown in Table 1. This, of course, poses a problem with respect to their potential use as therapeutic targets. Ectopic (non-lineage) expression of stem cell markers on cancer cells does not resolve the therapeutic dilemma. Currently the best option for a therapeutic target would be to rely on onco-fetal stem cell markers which are not expressed on normal adult stem cells. Otherwise there is at present no clear-cut distinction available between normal and cancer stem cell markers. Even at the level of regulatory miRNA clusters, identical patterns were observed (Shimono et al. 2009). Several stem cell markers are upregulated in cancer, e.g. ABCG or Bmi-1. In other instances, mutations have been detected (Lobo et al. 2007; Guo et al. 2008). In some cases isotypes of stem cell markers are preferentially expressed on tumor cells (e.g. CD44v, Günthert et al. 1991; or ALDH1A3, Marcato et al. Marcato et al. 2011), although this issue is not finally settled (Zöller 2011). We believe that a different, more general approach should be considered.

Table 1.

Examples of non-carbohydrate stem cell markers which are also cancer stem cell markers

Marker Description Expressed on Selected references
Cellular localization Normal stem or progenitor cells Cancer stem cells
ALDH1 Aldehyde dehydrogenase Cytoplasma AdSC (breast) CSC (breast and other carcinomas 1
Bmi-1 Polycomb protein Cytoplasma HSC, NSC, AdSC (intestine, breast, prostate) CSC (breast, prostate cancer, neuroblastomas, leukemias) 2, 3
CD29 Integrin-β1 Membrane AdSC (breast) CSC (breast, colon cancer) 4, 5
CD34 Adhesion protein Membrane HSC, MSC, HProgC, EnProgC CSC (leukemias, sarcomas) 6-11
CD44 Hyaluronan receptor, adhesion protein Membrane HSC, HProgC, PSC CSC (many carcinomas) 12-16
CD90 Thy-1 Membrane ProgC (thymus), MSC CSC (breast cancer, glioblastomas) 17, 18
CD117 SCF receptor Membrane ProgC CSC (breast, ovarian, lung cancer, glioblastomas) 16, 19
CD133 Prominin-1 Membrane HSC, NSC, AdSC (colon) CSC (many carcinomas, glioblastomas, melanomas) 20-24
CDw338 ABCG2, Bcrp1 ABC transporter, permitting multi-drug resistance Membrane ESC, HSC, AdSC CSC (breast, lung cancer, glioblastomas, melanomas) 25, 26
Nestin Class VI intermediate filament protein Cytoplasma NSC, ProgC (brain), HProgC CSC (glioblastomas, melanomas) 27, 28
Oct-4 Transcription factor Cytoplasma ESC, iPSC CSC (many carcinomas) 29, 30

This table lists only a few examples (exclusively human data) and selected references. It is not intended as a full review.

Abbreviations: AdSC adult stem cell, CSC cancer stem cell, EnProgC endothelial progenitor cell, ESC embryonic stem cell, HProgC hematopoietic progenitor cell, HSC hematopoietic stem cell, ProgC progenitor cell, PSC pluripotent stem cell, iPSC induced pluripotent stem cell.

,Ginestier et al. 2007; 2, Sangiorgi and Capecchi Sangiorgi and Capecchi 2008; 3, Lukacs et al. Lukacs et al. 2010; 4, Pontier and Muller Pontier and Muller 2009; 5, Taddei et al. Taddei et al. 2008; 6, Krause et al. Krause et al. 1996; 7, Furness et al. Furness et al. 2006; 8, Tardio Tardio 2009; 9, Annaloro et al. Annaloro et al. 2011; 10, Srour et al. Srour et al. 1991; 11, Basso and Timeus Basso and Timeus 1998; Günthert et al. 12, Günthert et al. Günthert et al. 1991; Zöller 13, Zöller Zöller 2011; 14, Singh et al. Singh et al. 2001; 15, Takaishi et al. Takaishi et al. 2009; 16, Zhang et al. Zhang et al. 2008; 17, Augello et al. Augello et al. 2010; 18, Salcido et al. Salcido et al. 2010; 19, Ponnusamy and Batra Ponnusamy and Batra 2008; 20, Liu et al. Liu et al. 2006; 21, Mizrak et al. Mizrak et al. 2008; 22, Ricci-Vitani et al. Ricci-Vitani et al. 2007; 23, Kemper et al. Kemper et al. 2010; O’Brien et al. 24, O’Brien et al. O’Brien et al. 2007; 25, Bunting Bunting 2002; 26, Monzani et al. Monzani et al. 2007; 27, Krupkova et al. Krupkova et al. 2010; Dell’Albani 28, Dell’Albani Dell’Albani 2008; 29, Monk and Holding Monk and Holding 2001; 30, Carpenter et al. Carpenter et al. 2003.

Hypothesis: what makes CSC markers different?

Most stem cell markers described so far are proteins. A relatively small number of stem cell markers have been shown to be glycans bound to proteins or lipids (Table 2). Glycans are known to be developmentally regulated (Solter and Knowles 1978; Muramatsu 1988; Fenderson and Andrews 1992; Cao et al. 2001), and are often altered on tumor cells (Hakomori 1989; Cao et al. 1995; Dabelsteen 1996; Cao et al. 1997; Brockhausen 1999; Le Pendu et al. 2001; Cao et al. 2008). The question arises whether glycans may be able to play a role as stem cell markers in a more comprehensive sense. Interestingly, the glycosylation of stem cell markers has so far not been systematically examined.

Table 2.

Carbohydrate stem cell markers

Marker Description Expression on stem cell-like populations References
H type 1 SSEA-5, stage-specific embryonic antigen-5; carried on proteins Fucα1-2Galβ1-3GlcNAcβ1- PSC, iPSC; CSC (germ cell carcinomas) 1
CD15 Lewis X, SSEA-1, stage-specific embryonic antigen-1; carried on lipids or proteins Galβ1-4[Fucα1-3]GlcNAcβ1-3Galβ1- ESC, NSC, MSC; CSC (globlastomas) 2-7
CD60a GD3; ganglioside NeuAcα2-8NeuAcα2-3Galβ1-4Glcβ1- NSC; CSC (differentiated germ cell carcinomas, melanomas) 7, 8
CD77 Gb3, Pk antigen, Burkitt lymphoma antigen (BLA); globoside Galα1-4Galβ1-4Glcβ1- CSC (Burkitt lymphoma, breast cancer, germ cell carcinomas) 8, 9
CD173 H type 2; carried on proteins or lipids Fucα1-2Galβ1-4GlcNAcβ1- ESC cell lines, HProgC, MSC 9-11, 13
CD174 Lewis Y; carried on proteins or lipids Fucα1-2Galβ1-4[Fucα1-3]GlcNAcβ1- HProgC; CSC (breast cancer) 9, 11
CD175 Tn antigen; carried on proteins GalNAcα1- ESC cell lines; onfFN 12,13
CD176 TF, Thomsen-Friedenreich antigen, core-1; carried on proteins Galβ1-3GalNAcα1- ESC; CSC (diverse carcinomas and leukemias); onfFN 12-14
GD2 OFA-I-2; ganglioside GalNAcβ1-4[NeuAcα2-8NeuAcα2-3]Galβ1-4Glcβ1- NSC, MSC; CSC (differentiated germ cell carcinomas, breast cancer, melanomas) 7, 8, 10, 15
Gb4 Globoside GalNAcβ1-3Galα1-4Galβ1-4Glcβ1- CSC (germ cell carcinomas) 8
Gb5 SSEA-3, stage-specific embryonic antigen-3; globoside Carries TFβ (the β-anomer of TF) Galβ1-3GalNAcβ1-3Galα1-4Galβ1-4Glcβ1- ESC, MSC, iPSC; CSC (breast cancer, germ cell carcinomas) 4, 8, 16-19
Sialyl-Gb5 SSEA-4, stage-specific embryonic antigen-4, GL7; globoside NeuAcα2-3Galβ1-3GalNAcβ1-3Galα1-4Galβ1-4Glcβ1- ESC, MSC, iPSC, ProgC (breast); CSC (germ cell carcinomas) 4, 8, 16, 17, 19-21
Globo-H Carried on proteins or lipids Fucα1-2Galβ1-3GalNAcβ1-3Galα1-4Gal- CSC (breast cancer) 18
TRA-1-60 Tumor-recognition antigen; carried on protein Sialylated keratan sulfate proteoglycan ESC, MSC; CSC (teratocarcinomas) 4, 19, 22

Abbreviations: CSC cancer stem cell, ESC embryonic stem cell, HProgC hematogenic progenitor cell, iPSC induced pluripotent stem cell, MSC mesenchymal stem cell, NSC neuronal stem cell, onfFN oncofetal fibronectin, ProgC progenitor cell, PSC pluripotent stem cell.

,Tang et al. 2011; 2, Solter and Knowles Solter and Knowles 1978; 3, Son et al. Son et al. 2009; 4, Huang et al. Huang et al. 2009; 5, Hennen and Faissner Hennen and Faissner 2012; 6, Riethdorf et al. Riethdorf et al. 2006; 7, Yanagisawa et al. Yanagisawa et al. 2011; 8, Wenk et al. Wenk et al. 1994; 9, Cao et al. Cao et al. 2001; 10, Lin et al. Lin et al. 2010b; Schäfer et al. 11, Schäfer et al. Schäfer et al. 2011; 12, Matsuura et al. Matsuura et al. 1988; 13, Wearne et al. Wearne et al. 2008Lin et al. 2010a; 15, Battula et al. Battula et al. 2012; 16, Kannagi et al. Kannagi et al. 1983; 17, Henderson et al. Henderson et al. 2002; 18, Chang et al. Chang et al. 2008; 19, Carpenter et al. Carpenter et al. 2003; 20, Gang et al. Gang et al. 2007; 21, LaBarge et al. LaBarge et al. 2007; 22, Badcock et al. Badcock et al. 1999.

For many years we have been interested in the Thomsen-Friedenreich antigen or, more precisely, epitope (TF; CD176), which is an onco-fetal glycan structure (Galβ1-3GalNAcα1-). Although known since the mid-twenties of the last century, it was only in 1975 that Georg F. Springer discovered that this otherwise common cryptic structure is exposed (unmasked) on tumor cells (Springer et al. 1975; Springer 1984). We and others have developed monoclonal antibodies towards TF (Clausen et al. 1988; Karsten et al. 1995; Goletz et al. 2003) and examined its expression on different types of tumor tissues (Itzkowitz et al. 1989; Langkilde et al. 1992; Cao et al. 1995; Cao et al. 1999; Cao et al. 2000; Baldus et al. 2000; Goletz et al. 2003; Cao et al. 2008) as compared to their corresponding normal tissues (Cao et al. 1996). As a result of comprehensive studies it can be stated that in adults TF is a tumor marker of exceptional specificity. Among normal tissues, TF is expressed on activated T cells (Hernandez et al. 2007).

TF does not exist as a separate entity, but as part of a larger carbohydrate structure (O-glycan core-1) carried by many glycoproteins primarily of the mucin-type. In the case of tumor cells, these glycans are truncated or otherwise modified, and the core-1 structure (Galβ1-3GalNAcα1-) becomes exposed. Knowing that the glycosylation machinery of tumor cells is generally disturbed (Brockhausen 1999), one might expect that TF is expressed on most if not all glycoproteins of a tumor cell. However, this is not the case. During recent years several carrier molecules have been identified, and it was found that TF is in fact expressed on a very restricted number of proteins of a given tumor type (in most cases one or very few: Matsuura et al. 1988; Zebda et al. 1994; Singh et al. 2001; Baba et al. 2007; Cao et al. 2008). An even greater surprise to us was the fact that almost all TF carrier proteins identified so far turned up as known stem cell markers (Table 3). There are very few exceptions to this statement. The most remarkable exception is oncofetal fibronectin (onfFN, Matsuura et al. 1988), which is characterized by a single O-glycosylation (either TF or Tn) at a specific sequence. OnfFN is not a CSC marker per se, but an indicator and promoter of epithelial-mesenchymal transition (EMT) of epithelial cancer cells to secondary stem cell-like cells (Ding et al. 2012). A second example are two TF carrying glycoproteins (140 and 110 kDa) found in melanoma cells strongly correlated with high metastatic activity (Zebda et al. 1994). It is not known but conceivable that these proteins are in fact stem cell markers.

Table 3.

Carrier molecules of the Thomsen-Friedenreich antigen (TF, CD176)

Marker General description/expression on normal stem cells Expression on cancer stem cells TF-carrying CSC marker (source)
CD34 Transmembrane protein 105-120 kDa Adhesion protein Immature hematopoietic stem/progenitor cells, endothelial progenitor cells2 Leukemias, sarcomas2 AML cell line KG-1 (1)
CD44 Hyaluronan receptor, H-CAM, epican, phagocytic glycoprotein-1 80-95 kDa Adhesion protein, binds hyaluronic acid Hematopoietic and non-hematopoietic stem/progenitor cells2 Cancer of colon, breast, ovary, lung, liver, stomach, etc.2 Colon cancer cell line HT29 (2), lung, breast, and liver cancer (3) Carries also Lewis Y (4)
CD45 Leucocyte common antigen (LCA) 180-240 kDa Hematopoietic stem cells (7) Glioblastomas (5) Acute T cell leukemia cell line Jurkat (6)
CD164 MGC-24, endolyn 80 kDa Mucin-like glycoprotein Hematopoietic progenitor cells (10) Gastric and prostate cancer (8, 9) Gastric cancer cell line KATO-III (8)
CD227 Mucin-1, MUC1, EMA, PEM >200 kDa Heavily glycosylated mucin MUC1-C interacts with regulatory pathways Hematopoietic progenitor cells (13) Breast cancer (MCF7) side population (12), gastric cancer, AML (13), multiple myelomas (14) Breast cancer (11); gastric cancer cell line KATO-III (8)
MAGP1 Membrane glycoproteins from human melanoma cell lines 140 kDa (MAGP1), 110 kDa (MAGP2) Highly metastatic melanoma cell lines (15) Highly metastatic cell lines (e.g. T1C3) derived from M4Be (15)

Abbreviations: AML acute myelogenous leukemia, CSC cancer stem cell, MUC1-C cytoplasmic domain of MUC1.

1Not identical with microfibril-associated glycoproteins, also abbreviated MAGP (16).

2References see Table 1.

,Cao et al. 2008; 2, Singh et al. Singh et al. 2001; 3, Lin et al. Lin et al. 2010a; 4, Lin et al. Lin et al. 2010b; 5, Kang and Kang Kang and Kang 2007; 6, Baba et al. Baba et al. 2007; 7, Poppema et al. Poppema et al. 1996; 8, Masuzawa et al. Masuzawa et al. 1992; 9, Havens et al. Havens et al. 2006; 10, Watt et al. Watt et al. 2000; 11, Lloyd et al. Lloyd et al. 1996; 12, Engelmann et al. Engelmann et al. 2008; 13, Fatrai et al. Fatrai et al. 2008; 14, Cloosen et al. Cloosen et al. 2006; 15, Zebda et al. Zebda et al. 1994; 16, Gibson et al. Gibson et al. 1999.

These data and other more general considerations led us to propose the following hypothesis.

  1. During the process of malignant transformation from a normal stem or progenitor cell to a cancer stem cell, stem cell glycoprotein markers undergo alterations in their glycosylation.

  2. As a consequence, cancer stem cells carry cancer-specific glycans.

  3. This appears to be a selective process. Accordingly, these cancer-specific glycans are CSC makers.

  4. Changes in stem cell marker glycosylation contribute to the altered biological behavior of these cells.

In brief, we propose that cancer stem cell markers differ from their normal counterparts by the expression of tumor-specific glycans.

In order to substantiate the suggestion that CD176 (Thomsen-Friedenreich antigen) is specifically carried on CSC markers, we have recently performed a study on lung, breast and liver cancer cell lines as well as on tissue sections, in which we examined the co-expression of CD176 with the stem cell markers CD44 and CD133 (Lin et al. 2010a). In tissue sections of all three cancer types 5–30% of cells revealed co-expression of CD176/TF with CD44. Corresponding cell lines confirmed these data but showed greater variability in the number of co-expressing cells. This is not surprising since cell lines in vitro, and especially cancer cell lines, are the subject of manifold variation, selection and evolution processes. More importantly, we were able to provide direct evidence by a sandwich ELISA that CD44 is indeed the carrier molecule for CD176/TF in lung, breast and liver cancer cells (Lin et al. 2010a), confirming earlier data from colorectal carcinoma (Singh et al. 2001).

Other data support the proposed hypothesis or are at least not at odds with it.

The cancer stem cell concept implies that metastatic spread is, in principle, restricted to CSCs. In fact, metastases show in most cases a higher percentage of TF-positive cells or of TF-positive cases (Cao et al. 1995). Disseminated breast cancer cells in the bone marrow (DTC-BM, identified as cytokeratin+/MUC1+) are in almost all cases (96%) positive for CD176/TF (Schindlbeck et al. 2005). This is remarkable, since sections of primary tumors often show a mosaic of TF-positive and TF-negative cells (which is to be expected if TF is a CSC marker). In the light of our hypothesis the expression of TF on DTC might be interpreted as indicating that these cells are cancer stem cells, and thereby able to generate distant metastases. With respect to claim #4 of our hypothesis, it is interesting to note that a number of studies demonstrate the involvement of CD176/TF in metastasis formation (Beuth et al. 1988; Okuno et al. 1993; Shigeoka et al. 1999; Cao et al. 1995). Several modes of TF-mediated adhesion mechanisms leading to metastasis have been described. One is the binding of CD176/TF carrying cells to asialoglycoprotein receptors (ASGPR) in the liver (Schlepper-Schäfer and Springer 1989), which is confirmed by clinical (Cao et al. 1995) and experimental data (Shigeoka et al. 1999). Another TF-mediated mechanism, which leads to hematogenic metastatic spread, has also been described (Yu et al. 2007), and could be experimentally inhibited with TF-carrying anti-freeze glycoprotein from polar fish (Guha et al. 2013). Of course, both mechanisms do not exclude each other. Antibodies to CD176/TF have been demonstrated to prevent TF-mediated metastatic spread (Shiogeoka et al. 1999) and to induce apoptosis (Yi et al. 2011). Furthermore, the expression of TF has been found to be correlated with invasive tumor growth (Limas and Lange 1986; Zebda et al. 1994), and interestingly also in a special case of normal cells (trophoblast cells) invading the decidua (Jeschke et al. 2002). The lectin Jacalin induces T lymphocyte activation following binding to TF on Jurkat cells (an acute T cell leukemia cell line, Baba et al. 2007).

An instructive example of how TF at a specific site can lead to a re-direction of differentiation is fibronectin (FN). Malignant FN (onfFN) differs from normal FN (norFN) by a glycosylation at the threonine of the sequence VTHPGY by either TF or its precursor, Tn, leading to a conformational change of the FN molecule which completely modifies its function (Matsuura et al. 1988). OnfFN, but not norFN, is able to induce EMT in carcinoma cells. Moreover, onfFN acts synergistically in this repect with the transforming growth factor, TGFβ1 (Ding et al. 2012). Interestingly, tumor MUC1 differs from normal epithelial MUC1 in a similar conformational change induced by O-glycosylation at the threonine of the sequence PDTRP with either TF or Tn (Karsten et al. 2005).

Taken together, direct and circumstantial evidence suggest that the TF disaccharide is typically found on proteins which are (cancer) stem cell markers or which are proteins with similar functions. Moreover, TF confers direct and indirect properties enhancing the malignancy of the cancer cell. Thereby TF is a characteristic example for the type of changes which occur on glycoprotein stem cell markers during malignant transformation and which, according to our hypothesis, make the difference between normal and cancer stem cell markers.

Questions to be answered

The fact that the glycosylation of cellular glycoproteins is altered in cancer has been well known for decades (Hakomori 1989). Our hypothesis, however, does not simply extend this idea to stem cell markers but claims that this is not a random process. It appears to be selective with respect to the proteins as well as with respect to the glycans involved. This raises several questions, for instance, what is the reason for the apparent selectivity of expression of, e.g., CD176/TF (and probably certain other glycans) on stem cell marker molecules? We are at present unable to offer an explanation for this type of selectivity. However, remarkable selectivity of glycan changes has already been reported in other cases (Hernandez et al. 2007; Singh et al. 2001).

Furthermore, one may ask which other glycans from a great diversity of potential candidates (Hakomori 1989; Zhang et al. 1997) might be able to confer the property of being selectively expressed as CSC markers. Tumor specificity may be the most important qualifier. According to this, CD176/TF is a prime candidate. However, it remains open to what extent other known carbohydrate tumor markers such as, for instance, CD175 (Tn), CD175s (sialyl-Tn), CD174 (Lewis Y), CD15 (Lewis X), CD15s (sialyl-Lewis X), CA19-9 (sialyl-Lewis a), or some subtypes of A or H (blood group-related glycans) might also be carried on CSC marker proteins. So far only few data are available. Lewis Y is at present the second most likely CSC marker-specific glycan. It has been found co-expressed with CD44 in breast cancer tissues (Lin et al. 2010b). Tn expression apparently alternates with TF (Barrow et al. 2013), and has also been found on oncofetal fibronectin in exchange to TF (Matsuura et al. 1988). It may be that these different glycans indicate different stages of the malignant stem cell-progenitor-tumor end cell lineage. Lewis X is carried on CD147, a potential CSC marker (Miyauchi et al. 1990; Riethdorf et al. 2006), but also known as a normal stem cell marker (Hennen and Faissner 2012).

Our hypothesis applies so far essentially to stem cell markers which are mucin-like surface proteins, which predominantly carry O-glycans. N-glycans are also altered on cancer stem cells (Hemmoranta et al. 2007). Their suitability as CSC markers remains to be elucidated. However, strong support for our hypothesis comes from glycolipids, whose changes in malignant transformation and in EMT are well known (Hakomori 1996). Some of them are CSC markers (Table 2). For instance, both the globoside Gb3 and the ganglioside GD2 have been described as breast cancer stem cell markers (Gupta et al. 2012; Battula et al. 2012).

It should be mentioned that some stem cell markers are intracellular proteins, such as Oct-4 (Monk and Holding 2001) or nestin (Krupkova et al. 2010). Their glycosylation is different from that of surface proteins, and so are any deviations in cancer cells (Slawson and Hart 2011).

Conclusions

The CSC concept, although well founded, has had to adapt to complex and partially adverse processes such as the role of EMT or the influence of the microenvironment on cancer stem cells (Medema 2013). The role of glycosylation of stem cells, and especially of stem cell markers, may add a further dimension to it.

If confirmed, this hypothesis has several consequences. First, stem cell markers which are found on normal as well as on tumor stem cells should be systematically analyzed for their glycan patterns in both circumstances. In particular, CSC markers should be examined for their potential expression of CD176/TF, CD175/Tn, and CD174/Lewis Y. Second, these tumor-related glycans could become very important or even crucial therapeutic targets. Third, targeting CD176/TF might also help to overcome the therapeutic problem of EMT, i.e. the generation of secondary cancer stem cells, because CD176/TF is expressed on oncofetal fibronectin, which plays a key role in this process (Matsuura et al. 1988).

In this connection the remarkably successful treatments of breast cancer patients by Georg F. Springer with a TF-carrying vaccine (Springer et al. 1994; Springer 1997) should be remembered. They may now be seen in a new light.

Acknowledgement

Dedicated to the memory of Georg F. Springer (1924–1998).

Footnotes

Competing interests

U.K. is consultant, S.G. is CEO and founder of Glycotope GmbH.

Authors’ contributions

Both authors contributed equally to the manuscript. Both authors read and approved the final manuscript.

Contributor Information

Uwe Karsten, Email: uwe.karsten@glycotope.com.

Steffen Goletz, Email: steffen.goletz@glycotope.com.

References

  • 1.Al-Hajj M, Wicha MS, Benito-Hernandez A, Morrison SJ, Clarke MF. Prospective identification of tumorigenic breast cancer cells. Proc Natl Acad Sci USA. 2003;100:3983–3988. doi: 10.1073/pnas.0530291100. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 2.Annaloro C, Onida F, Saporiti G, Lambertenghi Deliliers G. Cancer stem cells in hematological disorders: current and possible new therapeutic approaches. Curr Pharm Biotechnol. 2011;12:217–225. doi: 10.2174/138920111794295747. [DOI] [PubMed] [Google Scholar]
  • 3.Augello A, Kurth TB, De Bari C. Mesenchymal stem cells: a perspective from in vitro cultures to in vivo migration and niches. Eur Cells Mat. 2010;20:121–133. doi: 10.22203/ecm.v020a11. [DOI] [PubMed] [Google Scholar]
  • 4.Baba M, Ma BY, Nonaka M, Matsuishi Y, Hirano M, Nakamura N, Kawasaki N, Kawasaki N, Kawasaki T. Glycosylation-dependent interaction of Jacalin with CD45 induces T lymphocyte activation and Th1/Th2 cytokine secretion. J Leukoc Biol. 2007;81:1002–1011. doi: 10.1189/jlb.1106660. [DOI] [PubMed] [Google Scholar]
  • 5.Badcock G, Pigott C, Goepel J, Andrews PW. The human embryonal carcinoma marker antigen TRA-1-60 is a sialylated keratin sulfate proteoglycan. Cancer Res. 1999;59:4715–4719. [PubMed] [Google Scholar]
  • 6.Baldus SE, Zirbes TK, Hanisch FG, Kunze D, Shafizadeh ST, Nolden S, Mönig SP, Schneider PM, Karsten U, Thiele J, Hölscher AH, Dienes HP. Thomsen-Friedenreich (TF) antigen presents as a prognostic factor in colorectal carcinoma: a clinico-pathological study including 264 patients. Cancer. 2000;88:1536–1543. doi: 10.1002/(SICI)1097-0142(20000401)88:7<1536::AID-CNCR6>3.0.CO;2-W. [DOI] [PubMed] [Google Scholar]
  • 7.Barrow H, Tam B, Duckworth CA, Rhodes JM, Yu L-G. Suppression of core-1 Gal-transferase is associated with reduction of TF and reciprocal increase of Tn, sialyl-Tn and core-3 glycans in human colon cancer cells. PLoS One. 2013;8:e59792. doi: 10.1371/journal.pone.0059792. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 8.Basso G, Timeus F. Cytofluorimetric analysis of CD34 cells. Bone Marrow Transplant Suppl. 1998;5:S17–S20. [PubMed] [Google Scholar]
  • 9.Battula VL, Shi Y, Evans KW, Wang R-Y, Spaeth EL, Jacamo RO, Guerra R, Sahin AA, Marini FC, Hortobagyi G, Mani SA, Andreeff M. Ganglioside GD2 identifies breast cancer stem cells and promotes tumorigenesis. J Clin Invest. 2012;122:2066–2078. doi: 10.1172/JCI59735. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 10.Beuth J, Ko HL, Schirrmacher V, Uhlenbruck G, Pulverer G. Inhibition of liver tumor cell colonization in two animal tumor models by lectin blocking with D-galactose or arabinogalactan. Clin Exp Metastasis. 1988;6:115–120. doi: 10.1007/BF01784842. [DOI] [PubMed] [Google Scholar]
  • 11.Blanpain C, Fuchs E. Epidermal stem cells of the skin. Annu Rev Cell Dev. 2006;22:339–373. doi: 10.1146/annurev.cellbio.22.010305.104357. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 12.Brockhausen I. Pathways of O-glycan biosynthesis in cancer cells. Biochim Biophys Acta. 1999;1473:67–95. doi: 10.1016/S0304-4165(99)00170-1. [DOI] [PubMed] [Google Scholar]
  • 13.Bunting KD. ABC transporters as phenotypic markers and functional regulators of stem cells. Stem Cells. 2002;20:11–20. doi: 10.1002/stem.200011. [DOI] [PubMed] [Google Scholar]
  • 14.Cao Y, Karsten U, Liebrich W, Haensch W, Springer GF, Schlag PM. Expression of Thomsen-Friedenreich-related antigens in primary and metastatic colorectal carcinomas: a reevaluation. Cancer. 1995;76:1700–1708. doi: 10.1002/1097-0142(19951115)76:10<1700::AID-CNCR2820761005>3.0.CO;2-Z. [DOI] [PubMed] [Google Scholar]
  • 15.Cao Y, Stosiek P, Springer GF, Karsten U. Thomsen-Friedenreich-related carbohydrate antigens in normal adult human tissues: a systematic and comparative study. Histochem Cell Biol. 1996;106:197–207. doi: 10.1007/BF02484401. [DOI] [PubMed] [Google Scholar]
  • 16.Cao Y, Blohm D, Ghadimi BM, Stosiek P, Xing P-X, Karsten U. Mucins (MUC1 and MUC3) of gastrointestinal and breast epithelia reveal different and heterogeneous tumor-associated aberrations in glycosylation. J Histochem Cytochem. 1997;45:1547–1557. doi: 10.1177/002215549704501111. [DOI] [PubMed] [Google Scholar]
  • 17.Cao Y, Karsten U, Otto G, Bannasch P. Expression of MUC1, Thomsen-Friedenreich antigen, Tn, sialosyl-Tn, and α2,6-linked sialic acid in hepatocellular carcinomas and preneoplastic hepatocellular lesions. Virchows Arch. 1999;434:503–509. doi: 10.1007/s004280050375. [DOI] [PubMed] [Google Scholar]
  • 18.Cao Y, Karsten U, Zerban H, Bannasch P. Expression of MUC1, Thomsen-Friedenreich-related antigens, and cytokeratin 19 in human renal cell carcinomas and tubular clear cell lesions. Virchows Arch. 2000;436:119–126. doi: 10.1007/PL00008210. [DOI] [PubMed] [Google Scholar]
  • 19.Cao Y, Merling A, Karsten U, Schwartz-Albiez R. The fucosylated histo-blood group antigens H type 2 (blood group O, CD173) and Lewis Y (CD174) are expressed on CD34+ hematopoietic progenitors but absent on mature lymphocytes. Glycobiology. 2001;11:677–683. doi: 10.1093/glycob/11.8.677. [DOI] [PubMed] [Google Scholar]
  • 20.Cao Y, Merling A, Karsten U, Goletz S, Punzel M, Kraft R, Butschak G, Schwartz-Albiez R. Expression of CD175 (Tn), CD175s (sialosyl-Tn) and CD176 (Thomsen-Friedenreich antigen) on malignant human hematopoietic cells. Int J Cancer. 2008;123:89–99. doi: 10.1002/ijc.23493. [DOI] [PubMed] [Google Scholar]
  • 21.Carpenter MK, Rosler E, Rao MS. Characterization and differentiation of human embryonic stem cells. Cloning Stem Cells. 2003;5:79–88. doi: 10.1089/153623003321512193. [DOI] [PubMed] [Google Scholar]
  • 22.Chang W-W, Lee CH, Lee P, Lin J, Hsu C-W, Hung J-T, Lin J-J, Yu J-C, Shao L, Yu J, Wong C-H, Yu AL. Expression of globo H and SSEA3 in breast cancer stem cells and the involvement of fucosyl transferases 1 and 2 in globo H synthesis. Proc Natl Acad Sci USA. 2008;105:11667–11672. doi: 10.1073/pnas.0804979105. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 23.Clausen H, Stroud M, Parker J, Springer G, Hakomori S-I. Monoclonal antibodies directed to the blood group A associated structure, glactosyl-A: specificity and relation to the Thomsen-Friedenreich antigen. Mol Immunol. 1988;25:199–204. doi: 10.1016/0161-5890(88)90068-5. [DOI] [PubMed] [Google Scholar]
  • 24.Cloosen S, Gratama JW, van Leeuwen EBM, Senden-Gijsbers BLMG, Oving EBH, von Mensdorff-Pouilly S, Tarp MA, Mandel U, Clausen H, Germeraad WTV, Bos GMJ. Cancer specific Mucin-1 glycoforms are expressed on multiple myeloma. Brit J Haematol. 2006;135:513–516. doi: 10.1111/j.1365-2141.2006.06331.x. [DOI] [PubMed] [Google Scholar]
  • 25.Dabelsteen E. Cell surface carbohydrates as prognostic markers in human carcinomas. J Pathol. 1996;179:358–369. doi: 10.1002/(SICI)1096-9896(199608)179:4<358::AID-PATH564>3.0.CO;2-T. [DOI] [PubMed] [Google Scholar]
  • 26.Dalerba P, Cho RW, Clarke MF. Cancer stem cells: models and concepts. Annu Rev Med. 2007;58:267–284. doi: 10.1146/annurev.med.58.062105.204854. [DOI] [PubMed] [Google Scholar]
  • 27.Dell’Albani P. Stem cell markers in gliomas. Neurochem Res. 2008;33:2407–2415. doi: 10.1007/s11064-008-9723-8. [DOI] [PubMed] [Google Scholar]
  • 28.Ding Y, Gelfenbeyn K, Freire-de-Lima L, Handa K, Hakomori S-I. Induction of epithelial-esenchymal transition with O-glycosylated oncofetal fibronectin. FEBS Lett. 2012;585:1813–1820. doi: 10.1016/j.febslet.2012.05.020. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 29.Engelmann K, Shen H, Finn OJ. MCF7 side population cells with characteristics of cancer stem/progenitor cells express the tumor antigen MUC1. Cancer Res. 2008;68:2419–2426. doi: 10.1158/0008-5472.CAN-07-2249. [DOI] [PubMed] [Google Scholar]
  • 30.Fatrai S, Schepers H, Tadema H, Vellenga E, Daenen SMGJ, Schuringa JJ. Mucin 1 expression is enriched in the human stem cell fraction of cord blood and is upregulated in majority of the AML cases. Exp Hematol. 2008;36:1254–1265. doi: 10.1016/j.exphem.2008.04.015. [DOI] [PubMed] [Google Scholar]
  • 31.Fenderson BA, Andrews PW. Carbohydrate antigens of embryonal carcinoma cells: changes upon differentiation. APMIS. 1992;100(Suppl 27):109–118. [PubMed] [Google Scholar]
  • 32.Furness SGB, McNagny K. Beyond mere markers: functions for CD34 family of sialomucins in hematopoiesis. Immunol Res. 2006;34:13–32. doi: 10.1385/IR:34:1:13. [DOI] [PubMed] [Google Scholar]
  • 33.Gang EJ, Bosnakovski D, Figueiredo CA, Visser JW, Perlingeiro RCR. SSEA-4 identifies mesenchymal stem cells from bone marrow. Blood. 2007;109:1743–1751. doi: 10.1182/blood-2005-11-010504. [DOI] [PubMed] [Google Scholar]
  • 34.Gibson MA, Leavesley DI, Ashman LK. Microfibril-associated glycoprotein-2 specifically interacts with a range of bovine and human cell types via αvβ3 integrin. J Biol Chem. 1999;274:13060–13065. doi: 10.1074/jbc.274.19.13060. [DOI] [PubMed] [Google Scholar]
  • 35.Ginestier C, Hur MH, Charafe-Jauffret E, Monville F, Dutcher J, Brown M, Jacquemier J, Viens P, Kleer C, Liu S, Schott A, Hayes D, Birnbaum D, Wicha MS, Dontu G. ALDH1 is a marker of normal and malignant human mammary stem cells and a predictor of poor clinical outcome. Cell Stem Cell. 2007;1:555–567. doi: 10.1016/j.stem.2007.08.014. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 36.Goletz S, Cao Y, Danielczyk A, Ravn P, Schöber U, Karsten U. Thomsen-Friedenreich antigen: the “hidden”tumour antigen. Adv Exp Med Biol. 2003;535:147–162. doi: 10.1007/978-1-4615-0065-0_10. [DOI] [PubMed] [Google Scholar]
  • 37.Guha P, Kaptan E, Bandyopadhyaya G, Kaczanowska S, Davila E, Thompson K, Martin SS, Kalvakolanu DV, Vasta GR, Ahmed H. Cod glycopeptide with picomolar affinity to galectin-3 suppresses T-cell apoptosis and prostate cancer metastasis. Proc Natl Acad Sci USA. 2013;110:5052–5057. doi: 10.1073/pnas.1202653110. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 38.Günthert U, Hofmann M, Rudy W, Reber S, Zöller M, Haussmann I, Matzku S, Wenzel A, Ponta H, Herrlich P. A new variant of glycoprotein CD44 confers metastatic potential to rat carcinoma cells. Cell. 1991;65:13–24. doi: 10.1016/0092-8674(91)90403-L. [DOI] [PubMed] [Google Scholar]
  • 39.Guo W, Lasky JL, Chang C-J, Mosessian S, Lewis X, Xiao Y, Yeh JE, Chen JY, Iruela-Arispe ML, Varella-Garcia M, Wu H. Multi-genetic events collaboratively contribute to Pten-null leukemia stem-cell formation. Nature. 2008;453:529–533. doi: 10.1038/nature06933. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 40.Gupta V, Bhinge KN, Hosain SB, Xiong K, Gu X, Shi R, Ho M-Y, Khoo K-H, Li S-C, Li Y-T, Ambudkar SV, Jazwinski SM, Liu Y-Y. Ceramide glycosylation by glucosylceramide synthase selectively maintains the properties of breast cancer stem cells. J Biol Chem. 2012;287:37195–37205. doi: 10.1074/jbc.M112.396390. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 41.Hakomori S-I. Aberrant glycosylation in tumors and tumor-associated carbohydrate antigens. Adv Cancer Res. 1989;52:257–331. doi: 10.1016/S0065-230X(08)60215-8. [DOI] [PubMed] [Google Scholar]
  • 42.Hakomori S. Tumor malignancy defined by aberrant glycosylation and sphingo(glyco)lipid metabolism. Cancer Res. 1996;56:5309–5318. [PubMed] [Google Scholar]
  • 43.Havens AM, Jung Y, Sun YX, Wang J, Shah RB, Bühring HJ, Pienta KJ, Taichman RS. The role of sialomucin CD164 (MGC-24v or endolyn) in prostate cancer metastasis. BMC Cancer. 2006;6:195. doi: 10.1186/1471-2407-6-195. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 44.Hemmoranta H, Satomaa T, Blomqvist M, Heiskanen A, Aitio O, Saarinen J, Natunen J, Partanen J, Laine J, Jaatinen T. N-glycan structures and associated gene expression reflect the characteristic N-glycosylation pattern of human hematopoietic stem and progenitor cells. Exp Hematol. 2007;35:1279–1292. doi: 10.1016/j.exphem.2007.05.006. [DOI] [PubMed] [Google Scholar]
  • 45.Henderson JK, Draper JS, Baillie HS, Fishel S, Thomson JA, Moore H, Andrews PW. Preimplantation human embryos and embryonic stem cells show comparable expression of stage-specific embryonic antigens. Stem Cells. 2002;20:329–337. doi: 10.1634/stemcells.20-4-329. [DOI] [PubMed] [Google Scholar]
  • 46.Hennen E, Faissner A. Lewis X: a neural stem cell specific glycan? Int J Biochem Cell Biol. 2012;44:830–833. doi: 10.1016/j.biocel.2012.02.019. [DOI] [PubMed] [Google Scholar]
  • 47.Hernandez JD, Klein J, Van Dyken SJ, Marth JD, Baum LG. T-cell activation results in microheterogeneous changes in glycosylation of CD45. Int Immunol. 2007;19:847–856. doi: 10.1093/intimm/dxm053. [DOI] [PubMed] [Google Scholar]
  • 48.Huang Y-C, Yang Z-M, Chen X-H, Tan M-Y, Wang J, Li X-Q, Xie H-Q, Deng L. Isolation of mesenchymal stem cells from human placental decidua basalis and resistance to hypoxia and serum deprivation. Stem Cell Rev. 2009;5:247–255. doi: 10.1007/s12015-009-9069-x. [DOI] [PubMed] [Google Scholar]
  • 49.Itzkowitz SH, Yuan M, Montgomery CK, Kjeldsen T, Takahashi HK, Bigbee WL, Kim YS. Expression of Tn, sialosyl-Tn, and T antigens in human colon cancer. Cancer Res. 1989;49:197–204. [PubMed] [Google Scholar]
  • 50.Jeschke U, Richter DU, Hammer A, Briese V, Friese K, Karsten U. Expression of the Thomsen-Friedenreich antigen and of its putative carrier protein mucin 1 in the human placenta and in trophoblast cells in vitro. Histochem Cell Biol. 2002;117:219–226. doi: 10.1007/s00418-002-0383-5. [DOI] [PubMed] [Google Scholar]
  • 51.Kang M-K, Kang S-K. Tumorigenesis of chemotherapeutic drug-resistant cancer stem-like cells in brain glioma. Stem Cells Developm. 2007;16:837–847. doi: 10.1089/scd.2007.0006. [DOI] [PubMed] [Google Scholar]
  • 52.Kannagi R, Cochran NA, Ishigami F, Hakomori S-I, Andrews PW, Knowles BB, Solter D. Stage-specific embryonic antigens (SSEA-3 and −4) are epitopes of a unique globo-series ganglioside isolated from human teratocarcinoma cells. EMBO J. 1983;2:2355–2361. doi: 10.1002/j.1460-2075.1983.tb01746.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 53.Karsten U, Butschak G, Cao Y, Goletz S, Hanisch F-G. A new monoclonal antibody (A78-G/A7) to the Thomsen-Friedenreich pan-tumor antigen. Hybridoma. 1995;14:37–44. doi: 10.1089/hyb.1995.14.37. [DOI] [PubMed] [Google Scholar]
  • 54.Karsten U, von Mensdorff-Pouilly S, Goletz S. What makes MUC1 a tumor antigen? Tumor Biol. 2005;26:217–220. doi: 10.1159/000086956. [DOI] [PubMed] [Google Scholar]
  • 55.Kemper K, Sprick MR, de Bree M, Scopelliti A, Vermeulen L, Hoeke M, Zeilstra J, Pals ST, Mehmet H, Stassi G, Medema JP. The AC133 epitope, but not the CD133 protein, is lost upon cancer stem cell differentiation. Cancer Res. 2010;70:719–729. doi: 10.1158/0008-5472.CAN-09-1820. [DOI] [PubMed] [Google Scholar]
  • 56.Krause DS, Fackler MJ, Civin CI, May WS. CD34: structure, biology, and clinical utility. Blood. 1996;87:1–13. [PubMed] [Google Scholar]
  • 57.Krupkova O, Loja T, Zambo I, Veselska R. Nestin expression in human tumors and tumor cell lines. Neoplasma. 2010;57:291–298. doi: 10.4149/neo_2010_04_291. [DOI] [PubMed] [Google Scholar]
  • 58.LaBarge MA, Petersen OW, Bissell MJ. Of microenvironments and mammary stem cells. Stem Cell Rev. 2007;3:137–146. doi: 10.1007/s12015-007-0024-4. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 59.Langkilde NC, Wolf H, Clausen H, Orntoft TF. Human urinary bladder carcinoma glycoconjugates expressing T-(Galβ(1–3)GalNAcα1-O-R) and T-like antigens: a comparative study using peanut agglutinin and poly- and monoclonal antibodies. Cancer Res. 1992;52:5030–5036. [PubMed] [Google Scholar]
  • 60.Le Pendu J, Marionneau S, Cailleau-Thomas A, Rocher J, Le Moullac-Vaidye B, Clement M. ABH and Lewis histo-blood group antigens in cancer. APMIS. 2001;109:9–31. doi: 10.1111/j.1600-0463.2001.tb00011.x. [DOI] [PubMed] [Google Scholar]
  • 61.Limas C, Lange P. T-antigen in normal and neoplastic urothelium. Cancer. 1986;58:1236–1245. doi: 10.1002/1097-0142(19860915)58:6<1236::AID-CNCR2820580611>3.0.CO;2-I. [DOI] [PubMed] [Google Scholar]
  • 62.Lin W-M, Karsten U, Goletz S, Cheng R-C, Cao Y. Expression of CD176 (Thomsen-Friedenreich antigen) on lung, breast and liver cancer-initiating cells. Int J Exp Pathol. 2010;92:97–105. doi: 10.1111/j.1365-2613.2010.00747.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 63.Lin W-M, Karsten U, Goletz S, Cheng R-C, Cao Y. Expression of CD173 (H2) and CD174 (Lewis Y) with CD44 suggests that fucosylated histo-blood group antigens are markers of breast cancer-initiating cells. Virchows Arch. 2010;456:403–409. doi: 10.1007/s00428-010-0897-5. [DOI] [PubMed] [Google Scholar]
  • 64.Liu G, Yuan X, Zeng Z, Tunici P, Ng H, Abdulkadir IR, Lu D, Black KL, Yu JS. Analysis of gene expression and chemoresistance of CD133+ cancer stem cells in glioblastoma. Mol Cancer. 2006;5:67. doi: 10.1186/1476-4598-5-67. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 65.Lloyd KO, Burchell J, Kudryashov V, Yin BWT, Taylor-Papadimitriou J. Comparison of O-linked carbohydrate chains in MUC-1 mucin from normal breast epithelial cell lines and breast carcinoma cell lines. J Biol Chem. 1996;271:33325–33334. doi: 10.1074/jbc.271.52.33325. [DOI] [PubMed] [Google Scholar]
  • 66.Lobo NA, Shimono Y, Qian D, Clarke MF. The biology of cancer stem cells. Annu Rev Cell Dev Biol. 2007;23:675–699. doi: 10.1146/annurev.cellbio.22.010305.104154. [DOI] [PubMed] [Google Scholar]
  • 67.Lukacs RU, Memarzadeh S, Wu H, Witte ON. Bmi-1 is a crucial regulator of prostate stem cell self-renewal and malignant transformation. Cell Stem Cell. 2010;7:682–693. doi: 10.1016/j.stem.2010.11.013. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 68.Marcato P, Dean CA, Pan D, Araslanova R, Gillis M, Joshi M, Helyer L, Pan L, Leidal A, Gujar S, Giacomantonio CA, Lee PWK. Aldehyde dehydrogenase activity of breast cancer stem cells is primarily due to isoform ALDH1A3 and its expression is predictive of metastasis. Stem Cells. 2011;29:32–45. doi: 10.1002/stem.563. [DOI] [PubMed] [Google Scholar]
  • 69.Masuzawa Y, Miyauchi T, Hamanoue M, Ando S, Yoshida J, Takao S, Shimazu H, Adachi M, Muramatsu T. A novel core protein as well as polymorphic epithelial mucin carry peanut agglutinin binding sites in human gastric carcinoma cells: sequence analysis and examination of gene expression. J Biochem. 1992;112:609–615. doi: 10.1093/oxfordjournals.jbchem.a123948. [DOI] [PubMed] [Google Scholar]
  • 70.Matsuura H, Takio K, Titani K, Greene T, Levery SB, Salina MEK, Hakomori S. The oncofetal structure of human fibronectin defined by monoclonal antibody FDC-6: unique structural requirement for the antigenic specificity provided be a glycosylhexapeptide. J Biol Chem. 1988;263:3314–3322. [PubMed] [Google Scholar]
  • 71.Medema JP. Cancer stem cells: the challenges ahead. Nature Cell Biol. 2013;15:338–344. doi: 10.1038/ncb2717. [DOI] [PubMed] [Google Scholar]
  • 72.Miyauchi T, Kanekura T, Yamaoka A, Ozawa M, Miyazawa S, Muramatsu T. Basigin, a new, broadly distributed member of the immunoglobulin superfamily, has strong homology with both the immunoglobulin V domain and the β-chain of major histocompatibility complex class II antigen. J Biochem. 1990;107:316–323. doi: 10.1093/oxfordjournals.jbchem.a123045. [DOI] [PubMed] [Google Scholar]
  • 73.Mizrak D, Brittan M, Alison MR. CD133: molecule of the moment. J Pathol. 2008;214:3–9. doi: 10.1002/path.2283. [DOI] [PubMed] [Google Scholar]
  • 74.Monk M, Holding C. Human embryonic genes re-expressed in cancer cells. Oncogene. 2001;20:8085–8091. doi: 10.1038/sj.onc.1205088. [DOI] [PubMed] [Google Scholar]
  • 75.Monzani E, Facchetti F, Galmozzi E, Corsini E, Benetti A, Cavazzin C, Gritti A, Piccini A, Porro D, Santinami M, Invernici G, Parati E, Alessandri G, LaPorta CAM. Melanoma contains CD133 and ABCG2 positive cells with enhanced tumourigenic potential. Eur J Cancer. 2007;43:935–946. doi: 10.1016/j.ejca.2007.01.017. [DOI] [PubMed] [Google Scholar]
  • 76.Muramatsu T. Alterations of cell-surface carbohydrates during differentiation and development. Biochimie. 1988;70:1587–1596. doi: 10.1016/0300-9084(88)90294-5. [DOI] [PubMed] [Google Scholar]
  • 77.O’Brien CA, Pollett A, Gallinger S, Dick JE. A human colon cancer cell capable of initiating tumour growth in immunodeficient mice. Nature. 2007;445:106–110. doi: 10.1038/nature05372. [DOI] [PubMed] [Google Scholar]
  • 78.Okuno K, Shirayama Y, Ohnishi H, Yamamoto K, Ozaki M, Hirohata T, Nakajima I, Yasutomi M. A successful liver metastasis model in mice with neuraminidase treated colon 26. Surg Today. 1993;23:795–799. doi: 10.1007/BF00311622. [DOI] [PubMed] [Google Scholar]
  • 79.Ponnusamy MP, Batra SK. J Ovarian Res. 2008. Ovarian cancer: emerging concept on cancer stem cells. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 80.Pontier SM, Muller WJ. Integrins in mammary-stem-cell biology and breast-cancer progression – a role in cancer stem cells? J Cell Sci. 2009;122:207–214. doi: 10.1242/jcs.040394. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 81.Poppema S, Lai R, Visser L, Yan XJ. CD45 (leucocyte common antigen) expression in T and B lymphocyte subsets. Leuk Lymphoma. 1996;20:217–222. doi: 10.3109/10428199609051610. [DOI] [PubMed] [Google Scholar]
  • 82.Reya T, Morrison SJ, Clarke MF, Weissman IL. Stem cells, cancer, and cancer stem cells. Nature. 2001;414:105–111. doi: 10.1038/35102167. [DOI] [PubMed] [Google Scholar]
  • 83.Ricci-Vitani L, Lombardi DG, Pilozzi E, Biffoni M, Todaro M, Peschle C, De Maria R. Identification and expansion of human colon-cancer-initiating cells. Nature. 2007;445:111–115. doi: 10.1038/nature05384. [DOI] [PubMed] [Google Scholar]
  • 84.Riethdorf S, Reimers N, Assmann V, Kornfeld J-W, Terracciano L, Sauter G, Pantel K. High incidence of EMMPRIN expression in human tumors. Int J Cancer. 2006;119:1800–1810. doi: 10.1002/ijc.22062. [DOI] [PubMed] [Google Scholar]
  • 85.Salcido CD, Larochelle A, Taylor BJ, Dunbar CE, Varticovski L. Molecular characterization of side population cells with cancer stem cell-like characteristics in small-cell lung cancer. Brit J Cancer. 2010;102:1636–1644. doi: 10.1038/sj.bjc.6605668. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 86.Sangiorgi E, Capecchi MR. Bmi1 is expressed in vivo in intestinal stem cells. Nature Genet. 2008;40:915–920. doi: 10.1038/ng.165. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 87.Schäfer R, Schnaidt M, Klaffschenkel RA, Siegel G, Schüle M, Rädlein MA, Hermanutz-Klein U, Ayturan M, Buadze M, Gassner C, Danielyan L, Kluba T, Northoff H, Flegel WA. Expression of blood group genes by mesenchymal stem cells. Brit J Haematol. 2011;153:520–528. doi: 10.1111/j.1365-2141.2011.08652.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 88.Schindlbeck C, Jeschke U, Schulze S, Karsten U, Janni W, Rack B, Sommer H, Friese K. Characterisation of disseminated tumor cells in the bone marrow of breast cancer patients by the Thomsen-Friedenreich tumor antigen. Histochem Cell Biol. 2005;123:631–637. doi: 10.1007/s00418-005-0781-6. [DOI] [PubMed] [Google Scholar]
  • 89.Schlepper-Schäfer J, Springer GF. Carcinoma autoantigens T and Tn and their cleavage products interact with Gal/GalNAc-specific receptors on rat Kupffer cells and hepatocytes. Biochim Biophys Acta. 1989;1013:266–272. doi: 10.1016/0167-4889(89)90145-6. [DOI] [PubMed] [Google Scholar]
  • 90.Shigeoka H, Karsten U, Okuno K, Yasutomi M. Inhibition of liver metastases from neuraminidase-treated Colon 26 cells by an anti-Thomsen-Friedenreich-specific monoclonal antibody. Tumor Biol. 1999;20:139–146. doi: 10.1159/000030056. [DOI] [PubMed] [Google Scholar]
  • 91.Shimono Y, Zabala M, Cho RW, Lobo N, Dalerba P, Qian D, Dien M, Liu H, Panula SP, Chiao E, Dirbas FM, Somlo G, Pera RAR, Lao K, Clarke MF. Downregulation of miRNA-200c links breast cancer stem cells with normal stem cells. Cell. 2009;138:592–603. doi: 10.1016/j.cell.2009.07.011. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 92.Singh R, Campbell BJ, Yu L-G, Fernig DG, Milton JD, Goodlad RA, FitzGerald AJ, Rhodes JM. Cell surface-expressed Thomsen-Friedenreich antigen in colon cancer is predominantly carried on high molecular weight splice variants of CD44. Glycobiology. 2001;11:587–592. doi: 10.1093/glycob/11.7.587. [DOI] [PubMed] [Google Scholar]
  • 93.Slawson C, Hart GW. O-GlcNAc signaling: implications for cancer cell biology. Nat Rev Cancer. 2011;11:678–684. doi: 10.1038/nrc3114. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 94.Solter D, Knowles BB. Monoclonal antibody defining a stage-specific mouse embryonic antigen (SSEA-1) Proc Natl Acad Sci USA. 1978;75:5565–5569. doi: 10.1073/pnas.75.11.5565. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 95.Son MJ, Woolard K, Nam D-H, Lee J, Fine HA. SSEA-1 is an enrichment marker for tumor-initiating cells in human glioblastoma. Cell Stem Cell. 2009;4:440–452. doi: 10.1016/j.stem.2009.03.003. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 96.Springer GF. T and Tn, general carcinoma autoantigens. Science. 1984;224:1198–1206. doi: 10.1126/science.6729450. [DOI] [PubMed] [Google Scholar]
  • 97.Springer GF. Immunoreactive T and Tn epitopes in cancer diagnosis, prognosis, and immunotherapy. J Mol Med. 1997;75:594–602. doi: 10.1007/s001090050144. [DOI] [PubMed] [Google Scholar]
  • 98.Springer GF, Desai PR, Banatwala I. Blood group MN antigens and precursors in normal and malignant human breast glandular tissue. J Natl Cancer Inst. 1975;54:335–339. [PubMed] [Google Scholar]
  • 99.Springer GF, Desai PR, Tegtmeyer H, Carlstedt SC, Scanlon EF. T/Tn antigen vaccine is effective and safe in preventing recurrence of advanced human breast carcinoma. Cancer Biotherapy. 1994;9:7–15. doi: 10.1089/cbr.1994.9.7. [DOI] [PubMed] [Google Scholar]
  • 100.Srour EF, Brandt JE, Briddell RA, Leemhuis T, van Besien K, Hoffman R. Human CD34+ HLA-DR- bone marrow cells contain progenitor cells capable of self-renewal, multilineage differentiation, and long-term in vitro hematopoiesis. Blood Cells. 1991;17:287–295. [PubMed] [Google Scholar]
  • 101.Taddei I, Deugnier M-A, Faraldo MM, Petit V, Bouvard D, Medina D, Fässler R, Thiery JP, Glikhova MA. β1 integrin deletion from the basal compartment of the mammary epithelium affects stem cells. Nature Cell Biol. 2008;10:716–722. doi: 10.1038/ncb1734. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 102.Takaishi S, Okumura T, Tu S, Wang SSW, Shibata W, Vigneshwaran R, Gordon SAK, Shimada Y, Wang TC. Identification of gastric cancer stem cells using the cell surface marker CD44. Stem Cells. 2009;27:1006–1020. doi: 10.1002/stem.30. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 103.Tang C, Lee AS, Volkmer J-P, Sahoo D, Nag D, Mosley AR, Inlay MA, Ardehali R, Chavez SL, Pera RR, Behr B, Wu JC, Weissman IL, Drukker M. An antibody against SSEA-5 glycan on human pluripotent stem cells enables removal of teratoma-forming cells. Nature Biotechnol. 2011;29:829–834. doi: 10.1038/nbt.1947. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 104.Tardio JC. CD34-reactive tumors of the skin. An updated review of an ever-growing list of lesions. J Cutan Pathol. 2009;36:1079–1092. doi: 10.1111/j.1600-0560.2008.01212.x. [DOI] [PubMed] [Google Scholar]
  • 105.Watt SM, Chan JY-H. CD164 – a novel sialomucin on CD34+ cells. Leuk Lymphoma. 2000;37:1–25. doi: 10.3109/10428190009057625. [DOI] [PubMed] [Google Scholar]
  • 106.Wearne KA, Winter HC, Goldstein IJ. Temporal changes in the carbohydrates expressed on BG01 human embryonic stem cells during differentiation as embryoid bodies. Glycoconj J. 2008;25:121–136. doi: 10.1007/s10719-007-9064-x. [DOI] [PubMed] [Google Scholar]
  • 107.Wenk J, Andrews PW, Casper J, Hata J-I, Pera MF, von Keitz A, Damjanov I, Fenderson BA. Glycolipids of germ cell tumors: extended globo-series glycolipids are a hallmark of human embryonal carcinoma cells. Int J Cancer. 1994;58:108–115. doi: 10.1002/ijc.2910580118. [DOI] [PubMed] [Google Scholar]
  • 108.Yanagisawa M, Yoshimura S, Yu RK. ASN NEURO. 2011. Expression of GD2 and GD3 gangliosides in human embryonic neural stem cells. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 109.Yi B, Zhang M, Schwartz-Albiez R, Cao Y. Mechanisms of the apoptosis induced by CD176 antibody in human leukemic cells. Int J Oncol. 2011;38:1565–1573. doi: 10.3892/ijo.2011.992. [DOI] [PubMed] [Google Scholar]
  • 110.Yu L-G, Andrews N, Zhao Q, McKean D, Williams JF, Connor LJ, Gerasimenko OV, Hilkens J, Hirabayashi J, Kasai K, Rhodes JM. Galectin-3 interaction with Thomsen-Friedenreich disaccharide on cancer-associated MUC1 causes increased cancer cell endothelial adhesion. J Biol Chem. 2007;282:773–781. doi: 10.1074/jbc.M606862200. [DOI] [PubMed] [Google Scholar]
  • 111.Zebda N, Bailly M, Brown S, Doré JF, Berthier-Vergnes O. Expression of PNA-binding sites on specific glycoproteins by human melanoma cells is associated with a high metastatic potential. J Cell Biochem. 1994;54:161–173. doi: 10.1002/jcb.240540205. [DOI] [PubMed] [Google Scholar]
  • 112.Zhang S, Zhang HS, Cordon-Cardo C, Reuter VE, Singhal AK, Lloyd KO, Livingston PO. Selection of tumor antigens as targets for immune attack using immunohistochemistry: II. Blood group-related antigens. Int J Cancer. 1997;73:50–56. doi: 10.1002/(SICI)1097-0215(19970926)73:1<50::AID-IJC9>3.0.CO;2-0. [DOI] [PubMed] [Google Scholar]
  • 113.Zhang S, Balch C, Chan MW, Lai HC, Matei D, Schilder JM, Yan PS, Huang TH, Nephew KP. Identification and characterization of ovarian cancer-initiating cells from primary human tumors. Cancer Res. 2008;68:4311–4320. doi: 10.1158/0008-5472.CAN-08-0364. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 114.Zöller M. CD44: can a cancer-initiating cell profit from an abundantly expressed molecule? Nat Rev Cancer. 2011;11:254–267. doi: 10.1038/nrc3023. [DOI] [PubMed] [Google Scholar]

Articles from SpringerPlus are provided here courtesy of Springer-Verlag

RESOURCES