Abstract
30% of patients with essential hypertension have a decreased adrenal response to angiotensin II (A II) on a low but not a high sodium intake. They also have a compensatory increase in the activity of the renin-angiotensin system best documented in a sodium-restricted state.
To assess whether such a mechanism could account for the hypertension in genetically hypertensive rats, adrenal responsiveness to A II was determined in three groups of rats; spontaneously hypertensive rats (SHR), normotensive Wistar rats (WKY), and normotensive Sprague-Dawley rats (SDR). Animals in each group were placed on either a low or high sodium diet for 14 d with balance assessed by sodium excretion. The animals were then decapitated, blood was obtained for plasma renin activity (PRA), A II and aldosterone and adrenals isolated for the preparation of purified glomerulosa cells. The cells were incubated in Krebs-Ringer bicarbonate solution, containing bovine serum albumin, for 60 min in the absence and presence of increasing concentrations of A II.
The PRA, basal aldosterone output, and adrenal sensitivity to A II were similar in the three groups of rats on the high sodium diet. On the low sodium diet the SHR had a significantly (P < 0.01) higher PRA (25±7 ng/ml per h) than either the WKY (12±2 ng/ml per h) or the SDR (7±1 ng/ml per h) and lower basal aldosterone output (68±17 vs. 154±43 and 197±21 ng/106 cells per h, respectively). In addition, the slope of the A II dose response curve was more shallow (P < 0.01) in the cells from the SHR than those obtained from the WKY and SDR.
Thus, the SHR PRA and aldosterone responses to sodium restriction and aldosterone response to A II were similar to that previously described in a subgroup of patients with essential hypertension suggesting that the SHR will serve as a model for exploring the mechanism(s) responsible for the hypertension in these patients.
Full text
PDF






Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Bagby S. P., McDonald W. J., Mass R. D. Serial renin-angiotensin studies in spontaneously hypertensive and Wistar-Kyoto normotensive rats. Transition from normal- to high-renin status during the established phase of spontaneous hypertension. Hypertension. 1979 Jul-Aug;1(4):347–354. doi: 10.1161/01.hyp.1.4.347. [DOI] [PubMed] [Google Scholar]
- De Jong W., Lovenberg W., Sjoerdsma A. Increased plasma renin activity in the spontaneously hypertensive rat. Proc Soc Exp Biol Med. 1972 Apr;139(4):1213–1216. doi: 10.3181/00379727-139-36331. [DOI] [PubMed] [Google Scholar]
- Dluhy R. G., Bavli S. Z., Leung F. K., Solomon H. S., Moore T. J., Hollenberg N. K., Williams G. H. Abnormal adrenal responsiveness and angiotensin II dependency in high renin essential hypertension. J Clin Invest. 1979 Nov;64(5):1270–1276. doi: 10.1172/JCI109582. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Emanuel R. L., Cain J. P., Williams G. H. Double antibody radioimmunoassay of renin activity and angiotensin II in human peripheral plasma. J Lab Clin Med. 1973 Apr;81(4):632–640. [PubMed] [Google Scholar]
- Freeman R. H., Davis J. O., Aharon N. V., Ulick S., Weinberger M. H. Control of aldosterone secretion in the spontaneously hypertensive rat. Circ Res. 1975 Jul;37(1):66–71. doi: 10.1161/01.res.37.1.66. [DOI] [PubMed] [Google Scholar]
- Iams S. G., McMurthy J. P., Wexler B. C. Aldosterone, deoxycorticosterone, corticosterone, and prolactin changes during the lifespan of chronically and spontaneously hypertensive rats. Endocrinology. 1979 May;104(5):1357–1363. doi: 10.1210/endo-104-5-1357. [DOI] [PubMed] [Google Scholar]
- Karppanen H., Lahovaara S., Männistö P., Vapaatalo H. Plasma renin activity and in vitro synthesis of aldosterone by the adrenal glands of rats with spontaneous, renal, or pinealectomy-induced hypertension. Acta Physiol Scand. 1975 Jun;94(2):184–188. doi: 10.1111/j.1748-1716.1975.tb05878.x. [DOI] [PubMed] [Google Scholar]
- Kisch E. S., Dluhy R. G., Williams G. H. Enhanced aldosterone response to angiotensin II in human hypertension. Circ Res. 1976 Jun;38(6):502–505. doi: 10.1161/01.res.38.6.502. [DOI] [PubMed] [Google Scholar]
- Koletsky S., Shook P., Rivera-Velez J. Lack of increased renin-angiotensin activity in rats with spontaneous hypertension. Proc Soc Exp Biol Med. 1970 Sep;134(4):1187–1190. doi: 10.3181/00379727-134-34971. [DOI] [PubMed] [Google Scholar]
- Moll D., Dale S. L., Melby J. C. Adrenal steroidogenesis in the spontaneously hypertensive rat (SHR). Endocrinology. 1975 Feb;96(2):416–420. doi: 10.1210/endo-96-2-416. [DOI] [PubMed] [Google Scholar]
- Moore T. J., Williams G. H., Dluhy R. G., Bavli S. Z., Himathongkam T., Greenfield M. Altered renin-angiotensin-aldosterone relationships in normal renin essential hypertension. Circ Res. 1977 Aug;41(2):167–171. doi: 10.1161/01.res.41.2.167. [DOI] [PubMed] [Google Scholar]
- OKAMOTO K., AOKI K. Development of a strain of spontaneously hypertensive rats. Jpn Circ J. 1963 Mar;27:282–293. doi: 10.1253/jcj.27.282. [DOI] [PubMed] [Google Scholar]
- Pals D. T., Masucci F. D., Denning G. S., Jr, Sipos F., Fessler D. C. Role of the pressor action of angiotensin II in experimental hypertension. Circ Res. 1971 Dec;29(6):673–681. doi: 10.1161/01.res.29.6.673. [DOI] [PubMed] [Google Scholar]
- Sen S., Smeby R. R., Bumpus F. M. Renin in rats with spontaneous hypertension. Circ Res. 1972 Dec;31(6):876–880. doi: 10.1161/01.res.31.6.876. [DOI] [PubMed] [Google Scholar]
- Shiono K., Sokabe H. Renin-angiotensin system in spontaneously hypertensive rats. Am J Physiol. 1976 Oct;231(4):1295–1299. doi: 10.1152/ajplegacy.1976.231.4.1295. [DOI] [PubMed] [Google Scholar]
- Sokabe H. Renin activity of the kidney in the spontaneously hypertensive rat. Jpn J Physiol. 1966 Aug 15;16(4):380–388. doi: 10.2170/jjphysiol.16.380. [DOI] [PubMed] [Google Scholar]
- Sowers J. R., Sollars E. G., Tuck M. L., Asp N. D. Dopaminergic Modulation of renin activity and aldosterone and prolactin secretion in the spontaneously hypertensive rat. Proc Soc Exp Biol Med. 1980 Sep;164(4):598–603. doi: 10.3181/00379727-164-40923. [DOI] [PubMed] [Google Scholar]
- Swartz S. L., Williams G. H., Hollenberg N. K., Moore T. J., Dluhy R. G. Converting enzyme inhibition in essential hypertension: the hypotensive response does not reflect only reduced angiotensin II formation. Hypertension. 1979 Mar-Apr;1(2):106–111. doi: 10.1161/01.hyp.1.2.106. [DOI] [PubMed] [Google Scholar]
- Williams G. H., Hollenberg N. K., Braley L. M. Influence of sodium intake on vascular and adrenal angiotensin II receptors. Endocrinology. 1976 Jun;98(6):1343–1350. doi: 10.1210/endo-98-6-1343. [DOI] [PubMed] [Google Scholar]
- Williams G. H., Hollenberg N. K., Moore T. J., Swartz S. L., Dluhy R. G. The adrenal receptor for angiotensin II is altered in essential hypertension. J Clin Invest. 1979 Mar;63(3):419–427. doi: 10.1172/JCI109318. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Williams G. H., McDonnell L. M., Tait S. A., Tait J. F. The effect of medium composition and in vitro stimuli on the conversion of corticosterone to aldosterone in rat glomerulosa tissue. Endocrinology. 1972 Oct;91(4):948–960. doi: 10.1210/endo-91-4-948. [DOI] [PubMed] [Google Scholar]
- Wisgerhof M., Brown R. D. Increased adrenal sensitivity to angiotensin II in low-renin essential hypertension. J Clin Invest. 1978 Jun;61(6):1456–1462. doi: 10.1172/JCI109065. [DOI] [PMC free article] [PubMed] [Google Scholar]
