Abstract
Micropuncture and microcatheterization studies have been used extensively to investigate the pathophysiologic alterations in renal function induced by urinary tract obstruction. The present isolated tubule microperfusion studies were designed to examine the intrinsic alterations in segmental nephron function induced by 24 h of bilateral (BUO) and unilateral (UUO) urinary tract obstruction.
Following UUO superficial proximal convoluted tubule reabsorption rate (Jv) was not different from contralateral control (0.75±0.08 vs. 0.73±0.11 nl/mm per min, NS). Following UUO Jv in juxtamedullary proximal convoluted tubules (JMPCT) was reduced 32% (0.69±0.06 vs. 0.47±0.04 nl/mm per min, P < 0.02). Following UUO Jv in proximal straight tubules (PST) was reduced 52% (0.25±0.02 vs. 0.12±0.03, P < 0.01). Thick ascending limb (T-ALH) function was assessed by measurement of ability to lower perfusate chloride ion concentration (ΔCl). Following UUO ΔCl was reduced 76% (−39±9 vs. −9±1 meq/liter, P < 0.001). Cortical collecting tubule (CCT) function was assessed by measurement of antiduiretic hormone (ADH)-dependent osmotic water flow. Following UUO osmotic water flow was reduced 76% (0.90±0.08 vs. 0.22±0.04 nl/mm per min, P < 0.01) and this ADH resistance could not be overcome by cAMP. Nephron segments were then examined following relief of BUO. There were no differences in intrinsic function following relief of BUO when compared with UUO. We conclude that in UUO and BUO (a) the intrinsic tubular defects are identical, (b) the natriuresis noted is due, in part, to disordered JMPCT, PST, and T-ALH NaCl reabsorption, (c) the impaired concentrating ability is due, in part, to depressed function in T-ALH and ADH resistance of the CCT, and (d) the ADH resistance occurs at a site distal to the intracellular generation of cAMP.
Full text
PDF









Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Al-Zahid G., Schafer J. A., Troutman S. L., Andreoli T. E. Effect of antidiuretic hormone on water and solute permeation, and the activation energies for these processes, in mammalian cortical collecting tubules: evidence for parallel ADH-sensitive pathways for water and solute diffusion in luminal plasma membranes. J Membr Biol. 1977 Feb 24;31(1-2):103–129. doi: 10.1007/BF01869401. [DOI] [PubMed] [Google Scholar]
- Buerkert J., Alexander E., Purkerson M. L., Klahr S. On the site of decreased fluid reabsorption after release of ureteral obstruction in the rat. J Lab Clin Med. 1976 Mar;87(3):397–410. [PubMed] [Google Scholar]
- Buerkert J., Head M., Klahr S. Effects of acute bilateral ureteral obstruction on deep nephron and terminal collecting duct function in the young rat. J Clin Invest. 1977 Jun;59(6):1055–1065. doi: 10.1172/JCI108728. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Buerkert J., Martin D., Head M. Effect of acute ureteral obstruction on terminal collecting duct function in the weanling rat. Am J Physiol. 1979 Mar;236(3):F260–F267. doi: 10.1152/ajprenal.1979.236.3.F260. [DOI] [PubMed] [Google Scholar]
- Buerkert J., Martin D., Head M., Prasad J., Klahr S. Deep nephron function after release of acute unilateral ureteral obstruction in the young rat. J Clin Invest. 1978 Dec;62(6):1228–1239. doi: 10.1172/JCI109243. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Burg M. B., Green N. Function of the thick ascending limb of Henle's loop. Am J Physiol. 1973 Mar;224(3):659–668. doi: 10.1152/ajplegacy.1973.224.3.659. [DOI] [PubMed] [Google Scholar]
- Burg M. B., Orloff J. Control of fluid absorption in the renal proximal tubule. J Clin Invest. 1968 Sep;47(9):2016–2024. doi: 10.1172/JCI105888. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Burg M. B. Perfusion of isolated renal tubules. Yale J Biol Med. 1972 Jun-Aug;45(3-4):321–326. [PMC free article] [PubMed] [Google Scholar]
- Fine L. G., Schlondorff D., Trizna W., Gilbert R. M., Bricker N. S. Functional profile of the isolated uremic nephron. Impaired water permeability and adenylate cyclase responsiveness of the cortical collecting tubule to vasopressin. J Clin Invest. 1978 Jun;61(6):1519–1527. doi: 10.1172/JCI109072. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Gross J. B., Imai M., Kokko J. P. A functional comparison of the cortical collecting tubule and the distal convoluted tubule. J Clin Invest. 1975 Jun;55(6):1284–1294. doi: 10.1172/JCI108048. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Hall D. A., Barnes L. D., Dousa T. P. Cyclic AMP in action of antidiuretic hormone: effects of exogenous cyclic AMP and its new analogue. Am J Physiol. 1977 Apr;232(4):F368–F376. doi: 10.1152/ajprenal.1977.232.4.F368. [DOI] [PubMed] [Google Scholar]
- Hanley M. J. Isolated nephron segments in a rabbit model of ischemic acute renal failure. Am J Physiol. 1980 Jul;239(1):F17–F23. doi: 10.1152/ajprenal.1980.239.1.F17. [DOI] [PubMed] [Google Scholar]
- Hanley M. J., Kokko J. P. Study of chloride transport across the rabbit cortical collecting tubule. J Clin Invest. 1978 Jul;62(1):39–44. doi: 10.1172/JCI109111. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Harris R. H., Yarger W. E. Renal function after release of unilateral ureteral obstruction in rats. Am J Physiol. 1974 Oct;227(4):806–815. doi: 10.1152/ajplegacy.1974.227.4.806. [DOI] [PubMed] [Google Scholar]
- Helman S. I., Grantham J. J., Burg M. B. Effect of vasopressin on electrical resistance of renal cortical collecting tubules. Am J Physiol. 1971 Jun;220(6):1825–1832. doi: 10.1152/ajplegacy.1971.220.6.1825. [DOI] [PubMed] [Google Scholar]
- Kawamura S., Imai M., Seldin D. W., Kukko J. P. Characteristics of salt and water transport in superficial and juxtamedullary straight segments of proximal tubules. J Clin Invest. 1975 Jun;55(6):1269–1277. doi: 10.1172/JCI108046. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Klahr S., Buerkert J., Purkerson M. L. The kidney in obstructive uropathy. Contrib Nephrol. 1977;7:220–249. doi: 10.1159/000400125. [DOI] [PubMed] [Google Scholar]
- Kokko J. P. Sodium chloride and water transport in the descending limb of Henle. J Clin Invest. 1970 Oct;49(10):1838–1846. doi: 10.1172/JCI106401. [DOI] [PMC free article] [PubMed] [Google Scholar]
- McDougal W. S., Wright F. S. Defect in proximal and distal sodium transport in post-obstructive diuresis. Kidney Int. 1972 Dec;2(6):304–317. doi: 10.1038/ki.1972.114. [DOI] [PubMed] [Google Scholar]
- Moody T. E., Vaughan E. D., Jr, Gillenwater J. Y. Comparison of the renal hemodynamic response to unilateral and bilateral ureteral occlusion. Invest Urol. 1977 May;14(6):455–459. [PubMed] [Google Scholar]
- Nagle R. B., Bulger R. E., Cutler R. E., Jervis H. R., Benditt E. P. Unilateral obstructive nephropathy in the rabbit. I. Early morphologic, physiologic, and histochemical changes. Lab Invest. 1973 Apr;28(4):456–467. [PubMed] [Google Scholar]
- Schwartz G. J., Burg M. B. Mineralocorticoid effects on cation transport by cortical collecting tubules in vitro. Am J Physiol. 1978 Dec;235(6):F576–F585. doi: 10.1152/ajprenal.1978.235.6.F576. [DOI] [PubMed] [Google Scholar]
- Solez K., Ponchak S., Buono R. A., Vernon N., Finer P. M., Miller M., Heptinstall R. H. Inner medullary plasma flow in the kidney with ureteral obstruction. Am J Physiol. 1976 Nov;231(5 Pt 1):1315–1321. doi: 10.1152/ajplegacy.1976.231.5.1315. [DOI] [PubMed] [Google Scholar]
- Sonnenberg H., Wilson D. R. The role of the medullary collecting ducts in postobstructive diuresis. J Clin Invest. 1976 Jun;57(6):1564–1574. doi: 10.1172/JCI108427. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Wilson D. R. Pathophysiology of obstructive nephropathy. Kidney Int. 1980 Sep;18(3):281–292. doi: 10.1038/ki.1980.138. [DOI] [PubMed] [Google Scholar]
- Yarger W. E., Aynedjian H. S., Bank N. A micropuncture study of postobstructive diuresis in the rat. J Clin Invest. 1972 Mar;51(3):625–637. doi: 10.1172/JCI106852. [DOI] [PMC free article] [PubMed] [Google Scholar]