Skip to main content
The Journal of Clinical Investigation logoLink to The Journal of Clinical Investigation
. 1982 Jan;69(1):185–198. doi: 10.1172/JCI110430

Mechanism of Glomerulotubular Balance in the Setting of Heterogeneous Glomerular Injury

PRESERVATION OF A CLOSE FUNCTIONAL LINKAGE BETWEEN INDIVIDUAL NEPHRONS AND SURROUNDING MICROVASCULATURE

I Ichikawa 1,2,3, J R Hoyer 1,2,3, M W Seiler 1,2,3, B M Brenner 1,2,3
PMCID: PMC371182  PMID: 7054238

Abstract

Autologous immune complex nephropathy (AICN), an experimental model for human membranous glomerulopathy, is characterized by marked heterogeneity in function from glomerulus to glomerulus. However, the fraction of the filtered load of fluid reabsorbed by the proximal tubule remains nearly constant from nephron to nephron, despite wide variation in single nephron glomerular filtration rate (SNGFR). To define the physiological mechanisms responsible for this marked variation in SNGFR values within a given kidney and for the remarkable preservation of glomerulotubular balance, the various determinants of fluid exchange across glomerular and peritubular capillary networks were evaluated in Munich-Wistar rats with AICN. For comparison, similar measurements were obtained in rats with the functionally more homogeneous lesion of heterologous immune complex nephropathy. In AICN rats studied ∼5 mo after injection of renal tubule epithelial antigen (Fx1A), a high degree of glomerulus-proximal tubule balance was found, despite marked variations in SNGFR values within a single kidney. These changes were associated with marked heterogeneity in immunoglobulin and complement deposition within and among glomeruli. Although mean capillary hydraulic pressure and Bowman's space hydraulic pressure ranged widely from glomerulus to glomerulus, the mean glomerular transcapillary hydraulic pressure difference was remarkably uniform among these functionally diverse glomeruli and could not, therefore, be implicated as the cause of the dispersion in SNGFR values. The two remaining determinants of SNGFR, namely, glomerular plasma flow rate (QA) and ultrafiltration coefficient (Kf), varied markedly from glomerulus to glomerulus, but always in direct proportion to SNGFR, and proved to be responsible for the marked variation in SNGFR.

The mean net peritubular capillary reabsorptive force (¯Pr) correlated closely with the absolute rate of fluid reabsorption in adjacent proximal tubules (APR) in AICN. Of the factors determining ¯Pr, peritubular capillary hydraulic pressure was essentially constant in a given AICN kidney, whereas peritubular capillary plasma protein concentration and oncotic pressure varied directly with APR and largely accounted for the observed tight correlation between ¯Pr and APR.

On the basis of these observed correlations, we suggest that the close quantitative coupling between SNGFR and APR in individual nephrons in AICN is due to the functional response of individual glomeruli: those with the most pronounced declines in SNGFR are characterized by the most pronounced declines in QA and Kf. The resultant low peritubular capillary oncotic pressure favors a decline in APR, thus favoring nearly perfect glomerulotubular balance. In glomeruli with higher SNGFR values, QA and Kf values are also higher. These changes in Kf once again are capable of establishing the conditions in downstream peritubular capillaries, this time favoring augmented APR (i.e., high intracapillary oncotic pressure), again leading to nearly perfect glomerulotubular balance.

Full text

PDF
185

Images in this article

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Allison M. E., Wilson C. B., Gottschalk C. W. Pathophysiology of experimental glomerulonephritis in rats. J Clin Invest. 1974 May;53(5):1402–1423. doi: 10.1172/JCI107689. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Asterita M. F., Windhager E. E. Estimate of relative thickness of peritubular interstitial space in Necturus kidney. Am J Physiol. 1975 May;228(5):1393–1402. doi: 10.1152/ajplegacy.1975.228.5.1393. [DOI] [PubMed] [Google Scholar]
  3. Baylis C., Deen W. M., Myers B. D., Brenner B. M. Effects of some vasodilator drugs on transcapillary fluid exchange in renal cortex. Am J Physiol. 1976 Apr;230(4):1148–1158. doi: 10.1152/ajplegacy.1976.230.4.1148. [DOI] [PubMed] [Google Scholar]
  4. Baylis C., Rennke H. R., Brenner B. M. Mechanisms of the defect in glomerular ultrafiltration associated with gentamicin administration. Kidney Int. 1977 Nov;12(5):344–353. doi: 10.1038/ki.1977.121. [DOI] [PubMed] [Google Scholar]
  5. Bell R. D., Parry W. L., Grundy W. G. Renal lymph sodium and potassium concentrations following renal vasodilation. Proc Soc Exp Biol Med. 1973 Jun;143(2):499–501. doi: 10.3181/00379727-143-37352. [DOI] [PubMed] [Google Scholar]
  6. Blantz R. C., Tucker B. J. Determinants of peritubular capillary fluid uptake in hydropenia and saline and plasma expansion. Am J Physiol. 1975 Jun;228(6):1927–1935. doi: 10.1152/ajplegacy.1975.228.6.1927. [DOI] [PubMed] [Google Scholar]
  7. Blantz R. C., Wilson C. B. Acute effects of antiglomerular basement membrane antibody on the process of glomerular filtration in the rat. J Clin Invest. 1976 Oct;58(4):899–911. doi: 10.1172/JCI108543. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Briggs J. P., Wright F. S. Feedback control of glomerular filtration rate: site of the effector mechanism. Am J Physiol. 1979 Jan;236(1):F40–F47. doi: 10.1152/ajprenal.1979.236.1.F40. [DOI] [PubMed] [Google Scholar]
  9. Couser W. G., Stilmant M. M., Darby C. Autologous immune complex nephropathy. I. Sequential study of immune complex deposition, ultrastructural changes, proteinuria, and alterations in glomerular sialoprotein. Lab Invest. 1976 Jan;34(1):23–30. [PubMed] [Google Scholar]
  10. Deen W. M., Robertson C. R., Brenner B. M. A model of glomerular ultrafiltration in the rat. Am J Physiol. 1972 Nov;223(5):1178–1183. doi: 10.1152/ajplegacy.1972.223.5.1178. [DOI] [PubMed] [Google Scholar]
  11. Deen W. M., Robertson C. R., Brenner B. M. A model of peritubular capillary control of isotonic fluid reabsorption by the renal proximal tubule. Biophys J. 1973 Apr;13(4):340–358. doi: 10.1016/S0006-3495(73)85989-2. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Edgington T. S., Glassock R. J., Dixon F. J. Autologous immune-complex pathogenesis of experimental allergic glomerulonephritis. Science. 1967 Mar 17;155(3768):1432–1434. doi: 10.1126/science.155.3768.1432. [DOI] [PubMed] [Google Scholar]
  13. FUHR J., KACZMARCZYK J., KRUTTGEN C. D. Eine einfache colorimetrische Methode zur Inulinbestimmung für Nieren-Clearance-Untersuchungen bei Stoffwechselgesunden und Diabetikern. Klin Wochenschr. 1955 Aug 1;33(29-30):729–730. doi: 10.1007/BF01473295. [DOI] [PubMed] [Google Scholar]
  14. Hoyer J. R. Tubulointerstitial immune complex nephritis in rats immunized with Tamm-Horsfall protein. Kidney Int. 1980 Mar;17(3):284–292. doi: 10.1038/ki.1980.34. [DOI] [PubMed] [Google Scholar]
  15. Humphreys M. H., Earley L. E. The mechanism of decreased intestinal sodium and water absorption after acute volume expansion in the rat. J Clin Invest. 1971 Nov;50(11):2355–2367. doi: 10.1172/JCI106734. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Ichikawa I., Brenner B. M. Mechanism of inhibition of proximal tubule fluid reabsorption after exposure of the rat kidney to the physical effects of expansion of extracellular fluid volume. J Clin Invest. 1979 Nov;64(5):1466–1474. doi: 10.1172/JCI109605. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Maddox D. A., Bennett C. M., Deen W. M., Glassock R. J., Knutson D., Daugharty T. M., Brenner B. M. Determinants of glomerular filtration in experimental glomerulonephritis in the rat. J Clin Invest. 1975 Feb;55(2):305–318. doi: 10.1172/JCI107934. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Mancini G., Carbonara A. O., Heremans J. F. Immunochemical quantitation of antigens by single radial immunodiffusion. Immunochemistry. 1965 Sep;2(3):235–254. doi: 10.1016/0019-2791(65)90004-2. [DOI] [PubMed] [Google Scholar]
  19. Mendrick D. L., Noble B., Brentjens J. R., Andres G. A. Antibody-mediated injury to proximal tubules in Heymann nephritis. Kidney Int. 1980 Sep;18(3):328–343. doi: 10.1038/ki.1980.143. [DOI] [PubMed] [Google Scholar]
  20. O'morchoe C. C., Omorchoe P. J., Donati E. J. Comparison of hilar and capsular renal lymph. Am J Physiol. 1975 Aug;229(2):416–421. doi: 10.1152/ajplegacy.1975.229.2.416. [DOI] [PubMed] [Google Scholar]
  21. Salant D. J., Darby C., Couser W. G. Experimental membranous glomerulonephritis in rats. Quantitative studies of glomerular immune deposit formation in isolated glomeruli and whole animals. J Clin Invest. 1980 Jul;66(1):71–81. doi: 10.1172/JCI109837. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Seiler M. W., Rennke H. G., Venkatachalam M. A., Cotran R. S. Pathogenesis of polycation-induced alterations ("fusion") of glomerular epithelium. Lab Invest. 1977 Jan;36(1):48–61. [PubMed] [Google Scholar]
  23. Tucker B. J., Blantz R. C. Determinants of proximal tubular reabsorption as mechanisms of glomerulotubular balance. Am J Physiol. 1978 Aug;235(2):F142–F150. doi: 10.1152/ajprenal.1978.235.2.F142. [DOI] [PubMed] [Google Scholar]
  24. Viets J. W., Deen W. M., Troy J. L., Brenner B. M. Determination of serum protein concentration in nanoliter blood samples using fluorescamine or 9-phthalaldehyde. Anal Biochem. 1978 Aug 1;88(2):513–521. doi: 10.1016/0003-2697(78)90451-7. [DOI] [PubMed] [Google Scholar]
  25. Wolgast M., Persson E., Schnermann J., Ulfendahl H., Wunderlich P. Colloid osmotic pressure of the subcapsular interstitial fluid of rat kidneys during hydropenia and volume expansion. Pflugers Arch. 1973 May 18;340(2):123–131. doi: 10.1007/BF00588171. [DOI] [PubMed] [Google Scholar]

Articles from Journal of Clinical Investigation are provided here courtesy of American Society for Clinical Investigation

RESOURCES