Abstract
The purpose of the present study was to define myocardial and blood thallium-201 (Tl-201) kinetics after infusion of dipyridamole in normal canine myocardium and in myocardium distal to a coronary artery stenosis. Miniature radiation detector probes were implanted in the left ventricle in 39 open-chest dogs. A balloon constrictor was placed around the proximal left circumflex coronary artery. Electromagnetic flow probes were positioned proximally around both the left circumflex and left anterior descending coronary arteries. In five control dogs (group 1) the balloon occluder was not inflated; in 12 dogs (group 2) a mild stenosis was created such that resting flow was not reduced, yet the hyperemic response after 10 s of total occlusion was partially attenuated; in nine dogs (group 3) a moderate stenosis was created such that resting flow was not reduced, yet the hyperemic response was completely eliminated; and in 13 dogs (group 4) a severe stenosis was created such that resting flow was reduced. After intravenous dipyridamole (0.08 mg/kg . min-1 x 4 min), 1.5 mCi Tl-201 was injected intravenously and probe counts were collected continuously for 4 h. The mean 4-h fractional myocardial Tl-201 clearance for nonstenotic zones was 0.35, 0.27 for group 2 stenotic zones, 0.19 for group 3 stenotic zones, and 0.05 for group 4 stenotic zones (P less than 0.0001). After reaching peak activity, myocardial Tl-201 activity cleared biexponentially with a final decay constant lambda 2 = 0.0017 +/- 0.0001 min-1 (SE) for nonstenotic zones, 0.0011 +/- 0.0001 min-1 for group 2 stenotic zones, and 0.0006 +/- 0.0001 min-1 for group 3 stenotic zones (P less than 0.01). Group 4 stenotic zone Tl-201 clearances were negligible (decay constant essentially zero). Blood Tl-201 activity decayed triexponentially with a final blood lambda 3 = 0.0018 +/- 0.0001 min-1, which was almost identical to the final myocardial lambda 2 decay constant. Thus, the rate of myocardial Tl-201 clearance can distinguish between coronary stenoses of graded hemodynamic severity. These results may be applicable to quantitative techniques for determining myocardial Tl-201 clearance rates on serial clinical images after dipyridamole administration.
Full text
PDF










Images in this article
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Albro P. C., Gould K. L., Westcott R. J., Hamilton G. W., Ritchie J. L., Williams D. L. Noninvasive assessment of coronary stenoses by myocardial imaging during pharmacologic coronary vasodilatation. III. Clinical trial. Am J Cardiol. 1978 Nov;42(5):751–760. doi: 10.1016/0002-9149(78)90094-2. [DOI] [PubMed] [Google Scholar]
- Arrotti J., Gunnar R. M., Ward J., Loeb H. S. Comparative effect of intravenous dipyridamole and sublingual nitroglycerin on coronary hemodynamics and myocardial metabolism at rest and during atrial pacing in patients with coronary artery disease. Clin Cardiol. 1980 Dec;3(6):365–370. doi: 10.1002/clc.4960030602. [DOI] [PubMed] [Google Scholar]
- Becker L. C. Effect of nitroglycerin and dipyridamole on regional left ventricular blood flow during coronary artery occlusion. J Clin Invest. 1976 Dec;58(6):1287–1296. doi: 10.1172/JCI108584. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Beller G. A., Watson D. D., Ackell P., Pohost G. M. Time course of thallium-201 redistribution after transient myocardial ischemia. Circulation. 1980 Apr;61(4):791–797. doi: 10.1161/01.cir.61.4.791. [DOI] [PubMed] [Google Scholar]
- Berger B. C., Watson D. D., Taylor G. J., Burwell L. R., Martin R. P., Beller G. A. Effect of coronary collateral circulation on regional myocardial perfusion assessed with quantitative thallium-20 1 scintigraphy. Am J Cardiol. 1980 Sep;46(3):365–370. doi: 10.1016/0002-9149(80)90002-8. [DOI] [PubMed] [Google Scholar]
- Domenech R. J., Hoffman J. I., Noble M. I., Saunders K. B., Henson J. R., Subijanto S. Total and regional coronary blood flow measured by radioactive microspheres in conscious and anesthetized dogs. Circ Res. 1969 Nov;25(5):581–596. doi: 10.1161/01.res.25.5.581. [DOI] [PubMed] [Google Scholar]
- ELLIOT E. C. The effect of persantin on coronary flow and cardiac dynamics. Can Med Assoc J. 1961 Aug 26;85:469–476. [PMC free article] [PubMed] [Google Scholar]
- FAM W. M., MCGREGOR M. EFFECT OF CORONARY VASODILATOR DRUGS ON RETROGRADE FLOW IN AREAS OF CHRONIC MYOCARDIAL ISCHEMIA. Circ Res. 1964 Oct;15:355–364. doi: 10.1161/01.res.15.4.355. [DOI] [PubMed] [Google Scholar]
- Flameng W., Wüsten B., Schaper W. On the distribution of myocardial flow. Part II: Effects of arterial stenosis and vasodilation. Basic Res Cardiol. 1974 Jul-Aug;69(4):435–446. doi: 10.1007/BF01905946. [DOI] [PubMed] [Google Scholar]
- Gewirtz H., Grötte G. J., Strauss H. W., O'Keefe D. D., Akins C. W., Daggett W. M., Pohost G. M. The influence of left ventricular volume and wall motion in myocardial images. Circulation. 1979 Jun;59(6):1172–1177. doi: 10.1161/01.cir.59.6.1172. [DOI] [PubMed] [Google Scholar]
- Gould K. L., Lipscomb K., Calvert C. Compensatory changes of the distal coronary vascular bed during progressive coronary constriction. Circulation. 1975 Jun;51(6):1085–1094. doi: 10.1161/01.cir.51.6.1085. [DOI] [PubMed] [Google Scholar]
- Gould K. L. Noninvasive assessment of coronary stenoses by myocardial perfusion imaging during pharmacologic coronary vasodilatation. I. Physiologic basis and experimental validation. Am J Cardiol. 1978 Feb;41(2):267–278. doi: 10.1016/0002-9149(78)90165-0. [DOI] [PubMed] [Google Scholar]
- Gould K. L., Westcott R. J., Albro P. C., Hamilton G. W. Noninvasive assessment of coronary stenoses by myocardial imaging during pharmacologic coronary vasodilatation. II. Clinical methodology and feasibility. Am J Cardiol. 1978 Feb;41(2):279–287. doi: 10.1016/0002-9149(78)90166-2. [DOI] [PubMed] [Google Scholar]
- L'Abbate A., Biagini A., Michelassi C., Maseri A. Myocardial kinetics of thallium and potassium in man. Circulation. 1979 Oct;60(4):776–785. doi: 10.1161/01.cir.60.4.776. [DOI] [PubMed] [Google Scholar]
- Okada R. D., Boucher C. A., Strauss H. W., Pohost G. M. Exercise radionuclide imaging approaches to coronary artery disease. Am J Cardiol. 1980 Dec 18;46(7):1188–1204. doi: 10.1016/0002-9149(80)90289-1. [DOI] [PubMed] [Google Scholar]
- Pohost G. M., Okada R. D., O'Keefe D. D., Gewirtz H., Beller G., Strauss H. W., Chaffin J. S., Leppo J., Daggett W. M. Thallium redistribution in dogs with severe coronary artery stenosis of fixed caliber. Circ Res. 1981 Mar;48(3):439–446. doi: 10.1161/01.res.48.3.439. [DOI] [PubMed] [Google Scholar]
- Pohost G. M., Zir L. M., Moore R. H., McKusick K. A., Guiney T. E., Beller G. A. Differentiation of transiently ischemic from infarcted myocardium by serial imaging after a single dose of thallium-201. Circulation. 1977 Feb;55(2):294–302. doi: 10.1161/01.cir.55.2.294. [DOI] [PubMed] [Google Scholar]
- WEST J. W., BELLET S., MANZOLI U. C., MUELLER O. F. Effects of Persantin (RA8), a new coronary vasodilator, on coronary blood flow and cardiac dynamics in the dog. Circ Res. 1962 Jan;10:35–44. doi: 10.1161/01.res.10.1.35. [DOI] [PubMed] [Google Scholar]
- Wilcken D. E., Paoloni H. J., Eikens E. Evidence for intravenous dipyridamole (persantin) producing a "coronary steal" effect in the ischaemic myocardium. Aust N Z J Med. 1971 Feb;1(1):8–14. doi: 10.1111/j.1445-5994.1971.tb02254.x. [DOI] [PubMed] [Google Scholar]
- Young D. F., Tsai F. Y. Flow characteristics in models of arterial stenoses. I. Steady flow. J Biomech. 1973 Jul;6(4):395–410. doi: 10.1016/0021-9290(73)90099-7. [DOI] [PubMed] [Google Scholar]

