Skip to main content
The Journal of Clinical Investigation logoLink to The Journal of Clinical Investigation
. 1982 Aug;70(2):320–328. doi: 10.1172/JCI110620

Role of Propranolol in Improvement of the Relationship between O2 Supply and Consumption in an Ischemic Region of the Dog Heart

Robert S Conway 1,2, Harvey R Weiss 1,2
PMCID: PMC371239  PMID: 7096570

Abstract

Several aspects of the myocardial O2 supply/consumption relationship were determined after coronary artery occlusion and subsequent β-adrenergic blockade in 16 anesthetized open-chest dogs. Small artery and vein O2 saturations, and hence extraction, were obtained microspectrophotometrically and combined with radioactive microsphere blood flow determinations to calculate regional myocardial O2 consumption. Eight dogs remained untreated after coronary artery ligation while another group was given 2 mg/kg propranolol, 10 min after occlusion. Untreated occlusion resulted in decreased arterial and especially venous O2 saturations, indicating an increased O2 extraction. Ischemic O2 consumption was reduced and the subendocardial/subepicardial consumption ratio was reversed (1.26 vs. 0.37) due to the pattern of occluded area flow. Calculated O2 supply/consumption also decreased. Propranolol produced no significant changes in volume or distribution of flow within the ischemic region while reducing flow, extraction, and consumption in the unoccluded region. The heterogeneity of arterial and particularly venous O2 saturations within the ischemic region decreased dramatically. Venous O2 saturations were elevated relative to the control group resulting in a reduced O2 extraction. The decrease in heterogeneity of arterial and venous O2 saturations suggest that propranolol eliminates microregions of relatively high O2 extraction, consumption, and/or a majority of vessels with extremely low flow. This leads to a significant improvement in the O2 supply/consumption ratio in the ischemic myocardium of the dog. This may be due to a reduction in the heterogeneity and level of β1-adrenergic receptor activity within the heart.

Full text

PDF
320

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Armiger L. C., Gavin J. B. Changes in the microvasculature of ischemic and infarcted myocardium. Lab Invest. 1975 Jul;33(1):51–56. [PubMed] [Google Scholar]
  2. Becker L. C., Ferreira R., Thomas M. Effect of propranolol and isoprenaline on regional left ventricular blood flow in experimental myocardial ischaemia. Cardiovasc Res. 1975 Mar;9(2):178–186. doi: 10.1093/cvr/9.2.178. [DOI] [PubMed] [Google Scholar]
  3. Becker L. C., Ferreira R., Thomas M. Mapping of left ventricular blood flow with radioactive microspheres in experimental coronary artery occlusion. Cardiovasc Res. 1973 May;7(3):391–400. doi: 10.1093/cvr/7.3.391. [DOI] [PubMed] [Google Scholar]
  4. Becker L. C., Fortuin N. J., Pitt B. Effect of ischemia and antianginal drugs on the distribution of radioactive microspheres in the canine left ventricle. Circ Res. 1971 Feb;28(2):263–269. doi: 10.1161/01.res.28.2.263. [DOI] [PubMed] [Google Scholar]
  5. Berdeaux A., Peres da Costa C., Garnier M., Boissier J. R., Giudicelli J. F. Beta adrenergic blockade, regional left ventricular blood flow and ST-segment elevation in canine experimental myocardial ischemia. J Pharmacol Exp Ther. 1978 Jun;205(3):646–656. [PubMed] [Google Scholar]
  6. Blair E. Significance of sampling sites in the study of myocardial metabolism in regional ischemia. J Thorac Cardiovasc Surg. 1969 Aug;58(2):271–278. [PubMed] [Google Scholar]
  7. Buck J. D., Gross G. J., Warltier D. C., Jolly S. R., Hardman H. F. Comparative effects of cardioselective versus noncardioselective beta blockade on subendocardial blood flow and contractile function in ischemic myocardium. Am J Cardiol. 1979 Oct;44(4):657–663. doi: 10.1016/0002-9149(79)90284-4. [DOI] [PubMed] [Google Scholar]
  8. Burnam M. H., Sethna D. H., Rose D. M., Stern C. S., Shell W. E. Differences in beta-adrenoceptor binding in anterior and inferior myocardial wall microsomes of normal canine left ventricle. Cardiovasc Res. 1981 Apr;15(4):239–244. doi: 10.1093/cvr/15.4.239. [DOI] [PubMed] [Google Scholar]
  9. Chance B., Barlow C., Nakase Y., Takeda H., Mayevsky A., Fischetti R., Graham N., Sorge J. Heterogeneity of oxygen delivery in normoxic and hypoxic states: a fluorometer study. Am J Physiol. 1978 Dec;235(6):H809–H820. doi: 10.1152/ajpheart.1978.235.6.H809. [DOI] [PubMed] [Google Scholar]
  10. Domenech R. J., Hoffman J. I., Noble M. I., Saunders K. B., Henson J. R., Subijanto S. Total and regional coronary blood flow measured by radioactive microspheres in conscious and anesthetized dogs. Circ Res. 1969 Nov;25(5):581–596. doi: 10.1161/01.res.25.5.581. [DOI] [PubMed] [Google Scholar]
  11. Fox K., Welman E., Selwyn A. Myocardial infarction in the dog: effects of intravenous propranolol. Am J Cardiol. 1980 Apr;45(4):769–774. doi: 10.1016/0002-9149(80)90120-4. [DOI] [PubMed] [Google Scholar]
  12. Goodlett M., Dowling K., Eddy L. J., Downey J. M. Direct metabolic effects of isoproterenol and propranolol in ischemic myocardium of the dog. Am J Physiol. 1980 Oct;239(4):H469–H476. doi: 10.1152/ajpheart.1980.239.4.H469. [DOI] [PubMed] [Google Scholar]
  13. Kloner R. A., Fishbein M. C., Cotran R. S., Braunwald E., Maroko P. R. The effect of propranolol on microvascular injury in acute myocardial ischemia. Circulation. 1977 Jun;55(6):872–880. doi: 10.1161/01.cir.55.6.872. [DOI] [PubMed] [Google Scholar]
  14. Kloner R. A., Ganote C. E., Jennings R. B. The "no-reflow" phenomenon after temporary coronary occlusion in the dog. J Clin Invest. 1974 Dec;54(6):1496–1508. doi: 10.1172/JCI107898. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Kloner R. A., Reimer K. A., Jennings R. B. Distribution of coronary collateral flow in acute myocardial ischaemic injury: effect of propranolol. Cardiovasc Res. 1976 Jan;10(1):81–90. doi: 10.1093/cvr/10.1.81. [DOI] [PubMed] [Google Scholar]
  16. Lammerant J., De Herdt P., De Schryver C. Direct release of myocardial catecholamines into the left heart chambers : the enhancing effect of acute coronary occlusion. Arch Int Pharmacodyn Ther. 1966 Sep;163(1):219–226. [PubMed] [Google Scholar]
  17. Lipp J. A., Weiss H. R. Blood flow and relative tissue oxygenation of normal and partially ischaemic myocardium: effect of CO2. Clin Exp Pharmacol Physiol. 1978 Nov-Dec;5(6):567–577. doi: 10.1111/j.1440-1681.1978.tb00712.x. [DOI] [PubMed] [Google Scholar]
  18. Marshall R. J., Parratt J. R., Ledingham I. M. Changes in blood flow and oxygen consumption in normal and ischaemic regions of the myocardium following acute coronary artery ligation. Cardiovasc Res. 1974 Mar;8(2):204–215. doi: 10.1093/cvr/8.2.204. [DOI] [PubMed] [Google Scholar]
  19. Melby K., Bache R. J. Effect of selective beta-adrenergic blockade and stimulation on regional myocardial blood flow following acute coronary artery occlusion in the awake dog. Cardiovasc Res. 1980 Apr;14(4):192–198. doi: 10.1093/cvr/14.4.192. [DOI] [PubMed] [Google Scholar]
  20. Owen P., Thomas M., Young V., Opie L. Comparison between metabolic changes in local venous and coronary sinus blood after acute experimental coronary arterial occlusion. Am J Cardiol. 1970 May;25(5):562–570. doi: 10.1016/0002-9149(70)90595-3. [DOI] [PubMed] [Google Scholar]
  21. Pitt B., Craven P. Effect of propranolol on regional myocardial blood flow in acute ischaemia. Cardiovasc Res. 1970 Apr;4(2):176–179. doi: 10.1093/cvr/4.2.176. [DOI] [PubMed] [Google Scholar]
  22. Reimer K. A., Rasmussen M. M., Jennings R. B. Reduction by propranolol of myocardial necrosis following temporary coronary artery occlusion in dogs. Circ Res. 1973 Sep;33(3):353–363. doi: 10.1161/01.res.33.3.353. [DOI] [PubMed] [Google Scholar]
  23. Sinha A. K., Neubauer J. A., Lipp J. A., Weiss H. R. Blood O2 saturation determination in frozen tissue. Microvasc Res. 1977 Sep;14(2):133–144. doi: 10.1016/0026-2862(77)90013-9. [DOI] [PubMed] [Google Scholar]
  24. Sinha A. K., Neubauer J. A., Lipp J. A., Weiss H. R. Oxygen saturation determination in frozen blood. Microvasc Res. 1975 Nov;10(3):312–321. doi: 10.1016/0026-2862(75)90035-7. [DOI] [PubMed] [Google Scholar]
  25. Steenbergen C., Deleeuw G., Barlow C., Chance B., Williamson J. R. Heterogeneity of the hypoxic state in perfused rat heart. Circ Res. 1977 Nov;41(5):606–615. doi: 10.1161/01.res.41.5.606. [DOI] [PubMed] [Google Scholar]
  26. Theroux P., Franklin D., Ross J., Jr, Kemper W. S. Regional myocardial function during acute coronary artery occlusion and its modification by pharmacologic agents in the dog. Circ Res. 1974 Dec;35(6):896–908. doi: 10.1161/01.res.35.6.896. [DOI] [PubMed] [Google Scholar]
  27. Tomoike H., Ross J., Jr, Franklin D., Crozatier B., McKown D., Kemper W. S. Improvement by propranolol of regional myocardial dysfunction and abnormal coronary flow pattern in conscious dogs with coronary narrowing. Am J Cardiol. 1978 Apr;41(4):689–696. doi: 10.1016/0002-9149(78)90819-6. [DOI] [PubMed] [Google Scholar]
  28. Valori C., Thomas M., Shillingford J. Free noradrenaline and adrenaline excretion in relation to clinical syndromes following myocardial infarction. Am J Cardiol. 1967 Nov;20(5):605–617. doi: 10.1016/0002-9149(67)90001-x. [DOI] [PubMed] [Google Scholar]
  29. Vatner S. F., Baig H., Manders W. T., Ochs H., Pagani M. Effects of propranolol on regional myocardial function, electrograms, and blood flow in conscious dogs with myocardial ischemia. J Clin Invest. 1977 Aug;60(2):353–360. doi: 10.1172/JCI108783. [DOI] [PMC free article] [PubMed] [Google Scholar]
  30. Warltier D. C., Gross G. J., Hardman H. F. Effect of propranolol on regional myocardial blood flow and oxygen consumption. J Pharmacol Exp Ther. 1976 Aug;198(2):435–443. [PubMed] [Google Scholar]
  31. Warltier D. C., Gross G. J., Jesmok G. J., Brooks H. L., Hardman H. F. Protection of ischemic myocardium: comparison of effects of propranolol, bevantolol and N-dimethyl propranolol on infarct size following coronary artery occlusion in anesthetized dogs. Cardiology. 1980;66(3):133–146. doi: 10.1159/000170859. [DOI] [PubMed] [Google Scholar]
  32. Weishaar R., Sarma J. S., Maruyama Y., Fischer R., Bing R. J. Regional blood flow, contractility and metabolism in early myocardial infarction. Cardiology. 1977;62(1):2–20. doi: 10.1159/000169836. [DOI] [PubMed] [Google Scholar]
  33. Weiss H. R. Effect of coronary artery occlusion on regional arterial and venous O2 saturation, O2 extraction, blood flow, and O2 consumption in the dog heart. Circ Res. 1980 Sep;47(3):400–407. doi: 10.1161/01.res.47.3.400. [DOI] [PubMed] [Google Scholar]
  34. Weiss H. R., Lipp J. A. Graded flow reductions and O2 consumption of small partially ischemic region of dog left ventricle. Arch Int Pharmacodyn Ther. 1979 Jan;237(1):128–139. [PubMed] [Google Scholar]
  35. Weiss H. R., Neubauer J. A., Lipp J. A., Sinha A. K. Quantitative determination of regional oxygen consumption in the dog heart. Circ Res. 1978 Mar;42(3):394–401. doi: 10.1161/01.res.42.3.394. [DOI] [PubMed] [Google Scholar]
  36. Weiss H. R., Sinha A. K. Regional oxygen saturation of small arteries and veins in the canine myocardium. Circ Res. 1978 Jan;42(1):119–126. doi: 10.1161/01.res.42.1.119. [DOI] [PubMed] [Google Scholar]

Articles from Journal of Clinical Investigation are provided here courtesy of American Society for Clinical Investigation

RESOURCES