Skip to main content
The Journal of Clinical Investigation logoLink to The Journal of Clinical Investigation
. 1982 Aug;70(2):401–411. doi: 10.1172/JCI110630

Regulation of Bile Salt Transport in Rat Liver

EVIDENCE THAT INCREASED MAXIMUM BILE SALT SECRETORY CAPACITY IS DUE TO INCREASED CHOLIC ACID RECEPTORS

Francis R Simon 1,2,3, Eileen M Sutherland 1,2,3, Manuel Gonzalez 1,2,3
PMCID: PMC371249  PMID: 7096571

Abstract

Expansion of the bile salt pool size in rats increases maximum excretory capacity for taurocholate. We examined whether increased bile salt transport is due to recruitment of centrolobular transport units or rather to adaptive changes in the hepatocyte. Daily sodium cholate (100 mg/100 g body wt) was administered orally to rats. This treatment was well tolerated for at least 4 d and produced an 8.2-fold expansion of the bile salt pool. This expanded pool consisted predominently (99%) of cholic and deoxycholic acids. Significantly increased bile salt transport was not observed until 16 h after bile acid loading, and maximum elevations of transport capacity to 2.3-fold of control required ∼2 d. In contrast, maximum sulfobromophthalein excretion rates increased 2.2-fold as early as 4 h and actually fell to 1.5-fold increase at 4 d. We studied the possibility that this adaptive increase in bile salt secretory transport was due to changes in canalicular surface membrane area, lipid composition, or increased number of putative carriers. Canalicular membrane protein recovery and the specific activities of leucine aminopeptidase, Mg++-ATPase and 5′-nucleotidase activities were unaltered by bile salt pool expansion. The content of free and esterified cholesterol and total phospholipids was unchanged in liver surface membrane fractions compared with control values. In contrast, sodium cholate administration selectively increased specific [14C]cholic acid binding sites twofold in liver surface membrane fractions. Increased numbers of [14C]cholic acid receptors (a) was associated with the time-dependent increase in bile salt transport, and (b) was selective for the taurine conjugate of cholate and (c) was reduced by chenodeoxycholate. Changes in bile acid binding sites 16 h following taurocholate and chenodeoxycholate and the lack of change with glycocholate was associated with comparable changes in bile salt transport. In conclusion, selective bile salts increase bile salt transport in the liver through an adaptive increase in the density of putative bile acid carriers in liver surface membrane.

Full text

PDF
401

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. ARIAS I. M., JOHNSON L., WOLFSON S. Biliary excretion of injected conjugated and unconjugated bilirubin by normal and Gunn rats. Am J Physiol. 1961 May;200:1091–1094. doi: 10.1152/ajplegacy.1961.200.5.1091. [DOI] [PubMed] [Google Scholar]
  2. Accatino L., Simon F. R. Identification and characterization of a bile acid receptor in isolated liver surface membranes. J Clin Invest. 1976 Feb;57(2):496–508. doi: 10.1172/JCI108302. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Adler R. D., Wannagat F. J., Ockner R. K. Bile secretion in selective biliary obstruction. Adaptation of taurocholate transport maximum to increased secretory load in the rat. Gastroenterology. 1977 Jul;73(1):129–136. [PubMed] [Google Scholar]
  4. Alpert S., Mosher M., Shanske A., Arias I. M. Multiplicity of hepatic excretory mechanisms for organic anions. J Gen Physiol. 1969 Feb;53(2):238–247. doi: 10.1085/jgp.53.2.238. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. BARTLETT G. R. Phosphorus assay in column chromatography. J Biol Chem. 1959 Mar;234(3):466–468. [PubMed] [Google Scholar]
  6. Back P., Sjövall J., Sjövall K. Monohydroxy bile acids in plasma in intrahepatic cholestasis of pregnancy. Identification by computerized gas chromatography-mass spectrometry. Med Biol. 1974 Feb;52(1):31–38. [PubMed] [Google Scholar]
  7. Balint J. A., Beeler D. A., Kyriakides E. C., Treble D. H. The effect of bile salts upon lecithin synthesis. J Lab Clin Med. 1971 Jan;77(1):122–133. [PubMed] [Google Scholar]
  8. Berk R. N., Goldberger L. E., Loeb P. M. The role of bile salts in the hepatic excretion of iopanoic acid. Invest Radiol. 1974 Jan-Feb;9(1):7–15. doi: 10.1097/00004424-197401000-00002. [DOI] [PubMed] [Google Scholar]
  9. Binet S., Delage Y., Erlinger S. Influence of taurocholate, taurochenodeoxycholate, and taurodehydrocholate on sulfobromophthalein transport into bile. Am J Physiol. 1979 Jan;236(1):E10–E14. doi: 10.1152/ajpendo.1979.236.1.E10. [DOI] [PubMed] [Google Scholar]
  10. Carrella M., Dietschy J. M. Comparison of the effects of cholic acid and chenic acid feeding on rates of cholesterol synthesis in the liver of the rat. Am J Dig Dis. 1977 Apr;22(4):318–326. doi: 10.1007/BF01072189. [DOI] [PubMed] [Google Scholar]
  11. Cooper R. A. Abnormalities of cell-membrane fluidity in the pathogenesis of disease. N Engl J Med. 1977 Aug 18;297(7):371–377. doi: 10.1056/NEJM197708182970707. [DOI] [PubMed] [Google Scholar]
  12. Cronan J. E., Jr, Gelmann E. P. Physical properties of membrane lipids: biological relevance and regulation. Bacteriol Rev. 1975 Sep;39(3):232–256. doi: 10.1128/br.39.3.232-256.1975. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. DE DUVE C., PRESSMAN B. C., GIANETTO R., WATTIAUX R., APPELMANS F. Tissue fractionation studies. 6. Intracellular distribution patterns of enzymes in rat-liver tissue. Biochem J. 1955 Aug;60(4):604–617. doi: 10.1042/bj0600604. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Davis R. A., Kern F., Jr, Showalter R., Sutherland E., Sinensky M., Simon F. R. Alterations of hepatic Na+,K+-atpase and bile flow by estrogen: effects on liver surface membrane lipid structure and function. Proc Natl Acad Sci U S A. 1978 Sep;75(9):4130–4134. doi: 10.1073/pnas.75.9.4130. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Davis R. A., Showalter R., Kern F., Jr Reversal by triton WR-1339 of ethynyloestradiol-induced hepatic cholesterol esterification. Biochem J. 1978 Jul 15;174(1):45–51. doi: 10.1042/bj1740045. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. FOLCH J., LEES M., SLOANE STANLEY G. H. A simple method for the isolation and purification of total lipides from animal tissues. J Biol Chem. 1957 May;226(1):497–509. [PubMed] [Google Scholar]
  17. Forker E. L. Mechanisms of hepatic bile formation. Annu Rev Physiol. 1977;39:323–347. doi: 10.1146/annurev.ph.39.030177.001543. [DOI] [PubMed] [Google Scholar]
  18. GOLDBARG J. A., RUTENBURG A. M. The colorimetric determination of leucine aminopeptidase in urine and serum of normal subjects and patients with cancer and other diseases. Cancer. 1958 Mar-Apr;11(2):283–291. doi: 10.1002/1097-0142(195803/04)11:2<283::aid-cncr2820110209>3.0.co;2-8. [DOI] [PubMed] [Google Scholar]
  19. Gonzalez M. C., Sutherland E., Simon F. R. Regulation of hepatic transport of bile salt. Effect of protein synthesis inhibition on excretion of bile salts and their binding to liver surface membrane fractions. J Clin Invest. 1979 Apr;63(4):684–694. doi: 10.1172/JCI109351. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Goresky C. A., Haddad H. H., Kluger W. S., Nadeau B. E., Bach G. G. The enhancement of maximal bilirubin excretion with taurocholate-induced increments in bile flow. Can J Physiol Pharmacol. 1974 Jun;52(3):389–403. doi: 10.1139/y74-055. [DOI] [PubMed] [Google Scholar]
  21. Hardison W. G., Apter J. T. Micellar theory of biliary cholesterol excretion. Am J Physiol. 1972 Jan;222(1):61–67. doi: 10.1152/ajplegacy.1972.222.1.61. [DOI] [PubMed] [Google Scholar]
  22. Jones A. L., Hradek G. T., Renston R. H., Wong K. Y., Karlaganis G., Paumgartner G. Autoradiographic evidence for hepatic lobular concentration gradient of bile acid derivative. Am J Physiol. 1980 Mar;238(3):G233–G237. doi: 10.1152/ajpgi.1980.238.3.G233. [DOI] [PubMed] [Google Scholar]
  23. Kern F., Jr, Eriksson H., Curstedt T., Sjövall J. Effect of ethynylestradiol on biliary excretion of bile acids, phosphatidylcolines, and cholesterol in the bile fistula rat. J Lipid Res. 1977 Sep;18(5):623–634. [PubMed] [Google Scholar]
  24. LOWRY O. H., ROSEBROUGH N. J., FARR A. L., RANDALL R. J. Protein measurement with the Folin phenol reagent. J Biol Chem. 1951 Nov;193(1):265–275. [PubMed] [Google Scholar]
  25. Lowe P. J., Coleman R. Membrane fluidity and bile salt damage. Biochim Biophys Acta. 1981 Jan 8;640(1):55–65. doi: 10.1016/0005-2736(81)90531-9. [DOI] [PubMed] [Google Scholar]
  26. MUELLER M. N., KAPPAS A. IMPAIRMENT OF HEPATIC EXCRETION OF SULFOBROMOPHTHALEIN (BSP) BY NATURAL ESTROGENS. Trans Assoc Am Physicians. 1964;77:248–258. [PubMed] [Google Scholar]
  27. Matern S., Gerok W. Pathophysiology of the enterohepatic circulation of bile acids. Rev Physiol Biochem Pharmacol. 1979;85:125–204. doi: 10.1007/BFb0036117. [DOI] [PubMed] [Google Scholar]
  28. Mok H. Y., Perry P. M., Dowling R. H. The control of bile acid pool size: effect of jejunal resection and phenobarbitone on bile acid metabolism in the rat. Gut. 1974 Apr;15(4):247–253. [PMC free article] [PubMed] [Google Scholar]
  29. Nemchausky B. A., Layden T. J., Boyer J. L. Effects of chronic choleretic infusions of bile acids on the membrane of the bile canaliculus. A biochemical and morphologic study. Lab Invest. 1977 Mar;36(3):259–267. [PubMed] [Google Scholar]
  30. Neville D. M., Jr Isolation of an organ specific protein antigen from cell-surface membrane of rat liver. Biochim Biophys Acta. 1968 Apr 9;154(3):540–552. doi: 10.1016/0005-2795(68)90014-7. [DOI] [PubMed] [Google Scholar]
  31. O'Máille E. R. Bile salt secretion. Ir J Med Sci. 1977 Jul;146(7):190–198. doi: 10.1007/BF03030959. [DOI] [PubMed] [Google Scholar]
  32. O'Máille E. R., Richards T. G., Short A. H. Acute taurine depletion and maximal rates of hepatic conjugation and secretion of cholic acid in the dog. J Physiol. 1965 Sep;180(1):67–79. [PMC free article] [PubMed] [Google Scholar]
  33. O'Máille E. R., Richards T. G., Short A. H. Factors determining the maximal rate of organic anion secretion by the liver and further evidence on the hepatic site of action of the hormone secretin. J Physiol. 1966 Oct;186(2):424–438. doi: 10.1113/jphysiol.1966.sp008044. [DOI] [PMC free article] [PubMed] [Google Scholar]
  34. Palmer R. H. Bile acid heterogeneity and the gastrointestinal epithelium: from diarrhea to colon cancer. J Lab Clin Med. 1979 Nov;94(5):655–660. [PubMed] [Google Scholar]
  35. Pohl S. L., Birnbaumer L., Rodbell M. The glucagon-sensitive adenyl cyclase system in plasma membranes of rat liver. I. Properties. J Biol Chem. 1971 Mar 25;246(6):1849–1856. [PubMed] [Google Scholar]
  36. Reichen J., Paumgartner G. Kinetics of taurocholate uptake by the perfused rat liver. Gastroenterology. 1975 Jan;68(1):132–136. [PubMed] [Google Scholar]
  37. Reichen J., Paumgartner G. Uptake of bile acids by perfused rat liver. Am J Physiol. 1976 Sep;231(3):734–742. doi: 10.1152/ajplegacy.1976.231.3.734. [DOI] [PubMed] [Google Scholar]
  38. Reyes H., Kern F., Jr Effect of pregnancy on bile flow and biliary lipids in the hamster. Gastroenterology. 1979 Jan;76(1):144–150. [PubMed] [Google Scholar]
  39. Sandermann H., Jr Regulation of membrane enzymes by lipids. Biochim Biophys Acta. 1978 Sep 29;515(3):209–237. doi: 10.1016/0304-4157(78)90015-1. [DOI] [PubMed] [Google Scholar]
  40. Schoner W., von Ilberg C., Kramer R., Seubert W. On the mechanism of Na+- and K+-stimulated hydrolysis of adenosine triphosphate. 1. Purification and properties of a Na+-and K+-activated ATPase from ox brain. Eur J Biochem. 1967 May;1(3):334–343. doi: 10.1007/978-3-662-25813-2_45. [DOI] [PubMed] [Google Scholar]
  41. Schwarz L. R., Burr R., Schwenk M., Pfaff E., Greim H. Uptake of taurocholic acid into isolated rat-liver cells. Eur J Biochem. 1975 Jul 15;55(3):617–623. doi: 10.1111/j.1432-1033.1975.tb02199.x. [DOI] [PubMed] [Google Scholar]
  42. Schwarz L. R., Schwenk M., Pfaff E., Greim H. Excretion of taurocholate from isolated hepatocytes. Eur J Biochem. 1976 Dec 11;71(2):369–373. doi: 10.1111/j.1432-1033.1976.tb11123.x. [DOI] [PubMed] [Google Scholar]
  43. Simon F. R., Gonzalez M., Sutherland E., Accatino L., Davis R. A. Reversal of ethinyl estradiol-induced bile secretory failure with Triton WR-1339. J Clin Invest. 1980 Apr;65(4):851–860. doi: 10.1172/JCI109737. [DOI] [PMC free article] [PubMed] [Google Scholar]
  44. Song C. S., Bodansky O. Subcellular localization and properties of 5'-nucleotidase in the rat liver. J Biol Chem. 1967 Feb 25;242(4):694–699. [PubMed] [Google Scholar]
  45. Strange R. C., Nimmo I. A., Percy-Robb I. W. Equilibrium-dialysis studies of the interaction between cholic acid and 100000g-supernatant preparations from the rat liver. Biochem J. 1976 May 15;156(2):427–433. doi: 10.1042/bj1560427. [DOI] [PMC free article] [PubMed] [Google Scholar]
  46. Swell L., Entenman C., Leong G. F., Holloway R. J. Bile acids and lipid metabolism. IV. Influence of bile acids on biliary and liver organelle phospholipids and cholesterol. Am J Physiol. 1968 Dec;215(6):1390–1396. doi: 10.1152/ajplegacy.1968.215.6.1390. [DOI] [PubMed] [Google Scholar]
  47. TALALAY P. Enzymic analysis of steroid hormones. Methods Biochem Anal. 1960;8:119–143. doi: 10.1002/9780470110249.ch3. [DOI] [PubMed] [Google Scholar]
  48. Thistle J. L., Schoenfield L. J. Induced alterations in composition of bile of persons having cholelithiasis. Gastroenterology. 1971 Oct;61(4):488–496. [PubMed] [Google Scholar]
  49. Vonk R. J., Veen H vd, Prop G., Meijer D. K. The influence of taurocholate and dehydrocholate choleresis on plasma disappearance and biliary excretion of indocyanine green in the rat. Naunyn Schmiedebergs Arch Pharmacol. 1974;282(4):401–410. doi: 10.1007/BF00500988. [DOI] [PubMed] [Google Scholar]
  50. Watkins J. B., Klaassen C. D. Effect of repeated oral administration on taurocholate on hepatic excretory function in the rat. J Pharmacol Exp Ther. 1981 Jul;218(1):182–187. [PubMed] [Google Scholar]
  51. Wheeler H. O., King K. K. Biliary excretion of lecithin and cholesterol in the dog. J Clin Invest. 1972 Jun;51(6):1337–1350. doi: 10.1172/JCI106930. [DOI] [PMC free article] [PubMed] [Google Scholar]
  52. Whelan G., Combes B. Phenobarbital-enhanced biliary excretion of administered unconjugated and conjugated sulfobromophthalein (BSP) in the rat. Biochem Pharmacol. 1975 Jul 15;24(13-14):1283–1286. doi: 10.1016/0006-2952(75)90337-8. [DOI] [PubMed] [Google Scholar]

Articles from Journal of Clinical Investigation are provided here courtesy of American Society for Clinical Investigation

RESOURCES