Skip to main content
The Journal of Clinical Investigation logoLink to The Journal of Clinical Investigation
. 1982 Aug;70(2):443–452. doi: 10.1172/JCI110634

Mineralocorticoid and glucocorticoid effects on 31,000- and 29,000-dalton proopiomelanocortin in rat anterior pituitary and neurointermediate lobe.

B A Khalid, A T Lim, D R Fraillon, J W Funder
PMCID: PMC371253  PMID: 6284802

Abstract

The effects of adrenal steroids on proopiomelanocortin (POMC) levels in rat pituitary have been studied by two-dimensional gel electrophoresis. In intact rats the relative abundance of POMC was much higher in the neurointermediate lobe (N-IL) than in anterior pituitary (AP); in both tissues the predominant species appeared to be of 29,000-dalton (29K) molecular mass, with lesser amounts of a 31K form. In both tissues, the 31K and 29K forms showed multiple spots, consistent with different degrees of sialoglycosylation. Adrenalectomy was followed by a marked increase in AP levels of POMC, and a marked decrease in N-IL levels. In adrenalectomized rats, dexamethasone administration did not affect N-IL levels of POMC, but suppressed 35S incorporation into POMC in AP in a dose-related manner; deoxycorticosterone showed minimal effects on AP levels of POMC, but progressively elevated N-IL levels; 9 alpha fluorocortisol (9 alpha fF) progressively both suppressed AP levels, and raised N-IL levels of POMC. Estimation of immunoreactive (ir) ACTH and ir-beta-endorphin in parallel samples showed an elevation of N-IL levels in response to mineralocorticoids (deoxycorticosterone, 9 alpha fF), and a paradoxical elevation of AP levels in response to glucocorticoids (dexamethasone, 9 alpha fF) compared with oil-injected adrenalectomized controls. We conclude (a) that glucocorticoids suppress the secretion of ir-ACTH and ir-beta-endorphin to a greater extent than they inhibit the synthesis of POMC; (b) that mineralocorticoids specifically elevate the N-IL levels of both POMC and its immunoreactive product (beta-endorphin).

Full text

PDF
443

Images in this article

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Baumann H., Held W. A. Biosynthesis and hormone-regulated expression of secretory glycoproteins in rat liver and hepatoma cells. Effect of glucocorticoids and inflammation. J Biol Chem. 1981 Oct 10;256(19):10145–10155. [PubMed] [Google Scholar]
  2. Crine P., Gianoulakis C., Seidah N. G., Gossard F., Pezalla P. D., Lis M., Chrétien M. Biosynthesis of beta-endorphin from beta-lipotropin and a larger molecular weight precursor in rat pars intermedia. Proc Natl Acad Sci U S A. 1978 Oct;75(10):4719–4723. doi: 10.1073/pnas.75.10.4719. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Crine P., Gossard F., Seidah N. G., Blanchette L., Lis M., Chrétien M. Concomitant synthesis of beta-endorphin and alpha-melanotropin from two forms of pro-opiomelanocortin in the rat pars intermedia. Proc Natl Acad Sci U S A. 1979 Oct;76(10):5085–5089. doi: 10.1073/pnas.76.10.5085. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. De Kloet R., Wallach G., McEwen B. S. Differences in corticosterone and dexamethasone binding to rat brain and pituitary. Endocrinology. 1975 Mar;96(3):598–609. doi: 10.1210/endo-96-3-598. [DOI] [PubMed] [Google Scholar]
  5. Guillemin R., Vargo T., Rossier J., Minick S., Ling N., Rivier C., Vale W., Bloom F. beta-Endorphin and adrenocorticotropin are selected concomitantly by the pituitary gland. Science. 1977 Sep 30;197(4311):1367–1369. doi: 10.1126/science.197601. [DOI] [PubMed] [Google Scholar]
  6. Krozowski Z., Funder J. W. Mineralocorticoid receptors in rat anterior pituitary: toward a redefinition of "mineralocorticoid hormone". Endocrinology. 1981 Oct;109(4):1221–1224. doi: 10.1210/endo-109-4-1221. [DOI] [PubMed] [Google Scholar]
  7. Lim A. T., Khalid B. A., Clements J., Funder J. W. Glucocorticoid and mineralocorticoid effects on adrenocorticotropin and beta-endorphin in the adrenalectomized rat. J Clin Invest. 1982 May;69(5):1191–1198. doi: 10.1172/JCI110556. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Lowry P. J., Gillies G., Hope J., Jackson S. Structure and biosynthesis of peptides related to corticotrophin and lipotrophin. Horm Res. 1980;13(4-5):201–210. doi: 10.1159/000179290. [DOI] [PubMed] [Google Scholar]
  9. Mains R. E., Eipper B. A. Coordinate synthesis of corticotropins and endorphins by mouse pituitary tumor cells. J Biol Chem. 1978 Feb 10;253(3):651–655. [PubMed] [Google Scholar]
  10. Mains R. E., Eipper B. A., Ling N. Common precursor to corticotropins and endorphins. Proc Natl Acad Sci U S A. 1977 Jul;74(7):3014–3018. doi: 10.1073/pnas.74.7.3014. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Mains R. E., Eipper B. A. Synthesis and secretion of corticotropins, melanotropins, and endorphins by rat intermediate pituitary cells. J Biol Chem. 1979 Aug 25;254(16):7885–7894. [PubMed] [Google Scholar]
  12. McEwen B. S., de Kloet R., Wallach G. Interactions in vivo and in vitro of corticoids and progesterone with cell nuclei and soluble macromolecules from rat brain regions and pituitary. Brain Res. 1976 Mar 19;105(1):129–136. doi: 10.1016/0006-8993(76)90928-8. [DOI] [PubMed] [Google Scholar]
  13. O'Farrell P. H. High resolution two-dimensional electrophoresis of proteins. J Biol Chem. 1975 May 25;250(10):4007–4021. [PMC free article] [PubMed] [Google Scholar]
  14. Roberts J. L., Budarf M. L., Baxter J. D., Herbert E. Selective reduction of proadrenocorticotropin/endorphin proteins and messenger ribonucleic acid activity in mouse pituitary tumor cells by glucocorticoids. Biochemistry. 1979 Oct 30;18(22):4907–4915. doi: 10.1021/bi00589a019. [DOI] [PubMed] [Google Scholar]
  15. Roberts J. L., Herbert E. Characterization of a common precursor to corticotropin and beta-lipotropin: cell-free synthesis of the precursor and identification of corticotropin peptides in the molecule. Proc Natl Acad Sci U S A. 1977 Nov;74(11):4826–4830. doi: 10.1073/pnas.74.11.4826. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Roberts J. L., Phillips M., Rosa P. A., Herbert E. Steps involved in the processing of common precursor forms of adrenocorticotropin and endorphin in cultures of mouse pituitary cells. Biochemistry. 1978 Aug 22;17(17):3609–3618. doi: 10.1021/bi00610a030. [DOI] [PubMed] [Google Scholar]
  17. Rousseau G. G., Schmit J. P. Structure-activity relationships for glucocorticoids-I. Determination of receptor binding and biological activity. J Steroid Biochem. 1977 Sep;8(9):911–919. doi: 10.1016/0022-4731(77)90187-x. [DOI] [PubMed] [Google Scholar]
  18. Vale W., Rivier C., Yang L., Minick S., Guillemin R. Effects of purified hypothalamic corticotropin-releasing factor and other substances on the secretion of adrenocorticotropin and beta-endorphin-like immunoactivities in vitro. Endocrinology. 1978 Nov;103(5):1910–1915. doi: 10.1210/endo-103-5-1910. [DOI] [PubMed] [Google Scholar]
  19. Zakarian S., Smyth D. Distribution of active and inactive forms of endorphins in rat pituitary and brain. Proc Natl Acad Sci U S A. 1979 Nov;76(11):5972–5976. doi: 10.1073/pnas.76.11.5972. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Journal of Clinical Investigation are provided here courtesy of American Society for Clinical Investigation

RESOURCES