Skip to main content
The Journal of Clinical Investigation logoLink to The Journal of Clinical Investigation
. 1979 Dec;64(6):1544–1551. doi: 10.1172/JCI109614

Inhibition by propionyl-coenzyme A of N-acetylglutamate synthetase in rat liver mitochondria. A possible explanation for hyperammonemia in propionic and methylmalonic acidemia.

F X Coude, L Sweetman, W L Nyhan
PMCID: PMC371306  PMID: 500823

Abstract

In the search for the mechanism by which hyperammonemia complicates propionic and methylmalonic acidemia the effects of a series of acyl-coenzyme A (CoA) derivatives were studied on the activity of N-acetylglutamate synthetase in rat liver mitochondria using acetyl-CoA as substrate. Propionyl-CoA was found to be a competitive inhibitor. The inhibition constant of 0.71 mM is in the range of concentrations of propionate found in the serum of patients with propionic and methylmalonic acidemia. Propionyl-CoA was also found to be a substrate for N-acetylglutamate synthetase, forming N-propionylglutamate. This compound was a weak activator of rat liver carbamoylphosphate synthetase; the activation constant was 1.1 mM as compared with 0.12 mM for N-acetylglutamate. A decreased level of N-acetylglutamate in liver mitochondria that would follow inhibition of N-acetylglutamate synthetase by propionyl-CoA would be expected to lead to hyperammonemia. Methylmalonyl-CoA, tiglyl-CoA, and isovaleryl-CoA at a concentration of 3 mM caused 30-70% inhibition of N-acetylglutamate synthetase. 3the latter two compounds are readily detoxified by the formation of N-acylglycine conjugates in liver, which may prevent large accumulations and could explain why hyperammonemia is not characteristic of patients with beta-ketothiolase deficiency or isovaleric acidemia in whom these compounds would be expected to be elevated.

Full text

PDF
1544

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Ando T., Nyhan W. L., Connor J. D., Rasmussen K., Donnell G., Barnes N., Cottom D., Hull D. The oxidation of glycine and propionic acid in propionic acidemia with ketotic hyperglycinemia. Pediatr Res. 1972 Jun;6(6):576–583. doi: 10.1203/00006450-197206000-00006. [DOI] [PubMed] [Google Scholar]
  2. Ando T., Rasmussen K., Nyhan W. L., Donnell G. N., Barnes N. D. Propionic acidemia in patients with ketotic hyperglycinemia. J Pediatr. 1971 May;78(5):827–832. doi: 10.1016/s0022-3476(71)80354-2. [DOI] [PubMed] [Google Scholar]
  3. Bartlett K., Gompertz D. The specificity of glycine-N-acylase and acylglycine excretion in the organicacidaemias. Biochem Med. 1974 May;10(1):15–23. doi: 10.1016/0006-2944(74)90004-0. [DOI] [PubMed] [Google Scholar]
  4. Boisse J., Perelman R., Rudler J. C., Charpentier C., Pousset J. P. L'acidémie méthylmalonique. Une case nouvelle d'acidocétose grave. Etude d'un cas. Ann Pediatr (Paris) 1971 Jan 2;18(1):53–65. [PubMed] [Google Scholar]
  5. CLELAND W. W. The kinetics of enzyme-catalyzed reactions with two or more substrates or products. II. Inhibition: nomenclature and theory. Biochim Biophys Acta. 1963 Feb 12;67:173–187. doi: 10.1016/0006-3002(63)91815-8. [DOI] [PubMed] [Google Scholar]
  6. Frenkel E. P., Kitchens R. L., Hersh L. B., Frenkel R. Effect of vitamin B12 deprivation on the in vivo levels of coenzyme A intermediates associated with propionate metabolism. J Biol Chem. 1974 Nov 10;249(21):6984–6991. [PubMed] [Google Scholar]
  7. GRISOLIA S., COHEN P. P. Catalytic rôle of of glutamate derivatives in citrulline biosynthesis. J Biol Chem. 1953 Oct;204(2):753–757. [PubMed] [Google Scholar]
  8. Gerritsen T., Kaveggia E., Waisman H. A. A new type of idiopathic hyperglycinemia with hypo-oxaluria. Pediatrics. 1965 Dec;36(6):882–891. [PubMed] [Google Scholar]
  9. Glasgow A. M., Chase H. P. Effect of pent-4-enoic acid, propionic acid and other short-chain fatty acids on citrulline synthesis in rat liver mitochondria. Biochem J. 1976 May 15;156(2):301–307. doi: 10.1042/bj1560301. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Glasgow A. M., Chase H. P. Effect of propionic acid on fatty acid oxidation and ureagenesis. Pediatr Res. 1976 Jul;10(7):683–686. doi: 10.1203/00006450-197607000-00010. [DOI] [PubMed] [Google Scholar]
  11. HALL L. M., METZENBERG R. L., COHEN P. P. Isolation and characterization of a naturally occurring cofactor of carbamyl phosphate biosynthesis. J Biol Chem. 1958 Feb;230(2):1013–1021. [PubMed] [Google Scholar]
  12. Hillman R. E., Keating J. P. Beta-ketothiolase deficiency as a cause of the "ketotic hyperglycinemia syndrome". Pediatrics. 1974 Feb;53(2):221–225. [PubMed] [Google Scholar]
  13. Hommes F. A., Kuipers J. R., Elema J. D., Jansen J. F., Jonxis J. H. Propionicacidemia, a new inborn error of metabolism. Pediatr Res. 1968 Nov;2(6):519–524. doi: 10.1203/00006450-196811000-00010. [DOI] [PubMed] [Google Scholar]
  14. Hsia Y. E., Scully K. J., Rosenberg L. E. Defective propionate carboxylation in ketotic hyperglycinaemia. Lancet. 1969 Apr 12;1(7598):757–758. doi: 10.1016/s0140-6736(69)91757-7. [DOI] [PubMed] [Google Scholar]
  15. Kim S., Paik W. K., Cohen P. P. Ammonia intoxication in rats: protection by N-carbamoyl-L-glutamate plus L-arginine. Proc Natl Acad Sci U S A. 1972 Dec;69(12):3530–3533. doi: 10.1073/pnas.69.12.3530. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. LOWRY O. H., ROSEBROUGH N. J., FARR A. L., RANDALL R. J. Protein measurement with the Folin phenol reagent. J Biol Chem. 1951 Nov;193(1):265–275. [PubMed] [Google Scholar]
  17. MYERS D. K., SLATER E. C. The enzymic hydrolysis of adenosine triphosphate by liver mitochondria. I. Activities at different pH values. Biochem J. 1957 Dec;67(4):558–572. doi: 10.1042/bj0670558. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. McGivan J. D., Bradford N. M., Mendes-Mourão J. The regulation of carbamoyl phosphate synthase activity in rat liver mitochondria. Biochem J. 1976 Feb 15;154(2):415–421. doi: 10.1042/bj1540415. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Morrow G., 3rd, Barness L. A., Auerbach V. H., DiGeorge A. M., Ando T., Nyhan W. L. Observations on the coexistence of methylmalonic acidemia and glycinemia. J Pediatr. 1969 May;74(5):680–690. doi: 10.1016/s0022-3476(69)80130-7. [DOI] [PubMed] [Google Scholar]
  20. Packman S., Mahoney M. J., Tanaka K., Hsia Y. E. Severe hyperammonemia in a newborn infant with methylmalonyl-CoA mutase deficiency. J Pediatr. 1978 May;92(5):769–771. doi: 10.1016/s0022-3476(78)80147-4. [DOI] [PubMed] [Google Scholar]
  21. Rasmussen K., Ando T., Nyhan W. L., Hull D., Cottom D., Donnell G., Wadlington W., Kilroy A. W. Excretion of propionylglycine in propionic acidaemia. Clin Sci. 1972 Jun;42(6):665–671. doi: 10.1042/cs0420665. [DOI] [PubMed] [Google Scholar]
  22. Rasmussen K., Ando T., Nyhan W. L., Hull D., Cottom D., Kilroy A. W., Wadlington W. Excretion of tiglylglycine in propionic acidemia. J Pediatr. 1972 Nov;81(5):970–972. doi: 10.1016/s0022-3476(72)80551-1. [DOI] [PubMed] [Google Scholar]
  23. Rosenberg L. E., Lilljeqvist A. C., Hsia Y. E. Methylmalonic aciduria. An inborn error leading to metabolic acidosis, long-chain ketonuria and intermittent hyperglycinemia. N Engl J Med. 1968 Jun 13;278(24):1319–1322. doi: 10.1056/NEJM196806132782404. [DOI] [PubMed] [Google Scholar]
  24. Shafai T., Sweetman L., Weyler W., Goodman S. I., Fennessey P. V., Nyhan W. L. Propionic acidemia with severe hyperammonemia and defective glycine metabolism. J Pediatr. 1978 Jan;92(1):84–86. doi: 10.1016/s0022-3476(78)80081-x. [DOI] [PubMed] [Google Scholar]
  25. Shigesada K., Aoyagi K., Tatibana M. Role of acetylglutamate in ureotelism. Variations in acetylglutamate level and its possible significance in control of urea synthesis in mammalian liver. Eur J Biochem. 1978 Apr 17;85(2):385–391. doi: 10.1111/j.1432-1033.1978.tb12250.x. [DOI] [PubMed] [Google Scholar]
  26. Shigesada K., Tatibana M. Enzymatic synthesis of acetylglutamate by mammalian liver preparations and its stimulation by arginine. Biochem Biophys Res Commun. 1971 Sep;44(5):1117–1124. doi: 10.1016/s0006-291x(71)80201-2. [DOI] [PubMed] [Google Scholar]
  27. Shigesada K., Tatibana M. N-Acetylglutamate synthetase from rat-liver mitochondria. Partial purification and catalytic properties. Eur J Biochem. 1978 Mar;84(1):285–291. doi: 10.1111/j.1432-1033.1978.tb12167.x. [DOI] [PubMed] [Google Scholar]
  28. Shigesada K., Tatibana M. Role of acetylglutamate in ureotelism. I. Occurrence and biosynthesis of acetylglutamate in mouse and rat tissues. J Biol Chem. 1971 Sep 25;246(18):5588–5595. [PubMed] [Google Scholar]
  29. Söling H. D., Volkmann B. A sensitive assay for the determination of propionyl-CoA in biological material. Anal Biochem. 1973 Mar;52(1):305–310. doi: 10.1016/0003-2697(73)90353-9. [DOI] [PubMed] [Google Scholar]
  30. Tanaka K., Isselbacher K. J. The isolation and identification of N-isovalerylglycine from urine of patients with isovaleric acidemia. J Biol Chem. 1967 Jun 25;242(12):2966–2972. [PubMed] [Google Scholar]
  31. WILKINSON G. N. Statistical estimations in enzyme kinetics. Biochem J. 1961 Aug;80:324–332. doi: 10.1042/bj0800324. [DOI] [PMC free article] [PubMed] [Google Scholar]
  32. Wolf B., Hsia Y. E., Tanaka K., Rosenberg L. E. Correlation between serum propionate and blood ammonia concentrations in propionic acidemia. J Pediatr. 1978 Sep;93(3):471–473. doi: 10.1016/s0022-3476(78)81167-6. [DOI] [PubMed] [Google Scholar]
  33. van den Berg H., Boelkens M. T., Hommes F. A. A case of methylmalonic and propionic acidemia due to methulmalonyl-CoA carbonylmutase apoenzyme deficiency. Acta Paediatr Scand. 1976 Jan;65(1):113–118. doi: 10.1111/j.1651-2227.1976.tb04417.x. [DOI] [PubMed] [Google Scholar]

Articles from Journal of Clinical Investigation are provided here courtesy of American Society for Clinical Investigation

RESOURCES