Skip to main content
The Journal of Clinical Investigation logoLink to The Journal of Clinical Investigation
. 1980 Jan;65(1):1–4. doi: 10.1172/JCI109638

Developmental changes in glucose transport of guinea pig erythrocytes.

T Kondo, E Beutler
PMCID: PMC371333  PMID: 7350191

Abstract

The developmental changes in the capacity for D-glucose transport of guinea pig erythrocyte membranes were compared to alterations in the electrophoretic pattern of erythrocyte membrane components. Guinea pig erythrocytes lose their D-glucose carrier functions during development. Good correlation was observed between the loss of glucose uptake and apparent decrease of the zone 4.5 of Coomassie Blue-stained membrane proteins on electrophoresis. Reconstitution of membrane preparations in liposomes resulted in a parallel change in the D-glucose uptake and D-glucose penetration of intact erythrocytes. This suggests that the decrease of D-glucose transport capacity during development is caused by the loss of one or more protein components from the erythrocyte membranes.

Full text

PDF
1

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Baldwin S. A., Baldwin J. M., Gorga F. R., Lienhard G. E. Purification of the cytochalasin B binding component of the human erythrocyte monosaccharide transport system. Biochim Biophys Acta. 1979 Mar 23;552(1):183–188. doi: 10.1016/0005-2736(79)90257-8. [DOI] [PubMed] [Google Scholar]
  2. Beutler E., West C., Blume K. G. The removal of leukocytes and platelets from whole blood. J Lab Clin Med. 1976 Aug;88(2):328–333. [PubMed] [Google Scholar]
  3. DODGE J. T., MITCHELL C., HANAHAN D. J. The preparation and chemical characteristics of hemoglobin-free ghosts of human erythrocytes. Arch Biochem Biophys. 1963 Jan;100:119–130. doi: 10.1016/0003-9861(63)90042-0. [DOI] [PubMed] [Google Scholar]
  4. Fairbanks G., Steck T. L., Wallach D. F. Electrophoretic analysis of the major polypeptides of the human erythrocyte membrane. Biochemistry. 1971 Jun 22;10(13):2606–2617. doi: 10.1021/bi00789a030. [DOI] [PubMed] [Google Scholar]
  5. Holloway P. W. A simple procedure for removal of Triton X-100 from protein samples. Anal Biochem. 1973 May;53(1):304–308. doi: 10.1016/0003-2697(73)90436-3. [DOI] [PubMed] [Google Scholar]
  6. Kahlenberg A., Zala C. A. Reconstitution of D-glucose transport in vesicles composed of lipids and intrinsic protein (zone 4.5) of the human erythrocyte membrane. J Supramol Struct. 1977;7(3-4):287–300. doi: 10.1002/jss.400070303. [DOI] [PubMed] [Google Scholar]
  7. Kasahara M., Hinkle P. C. Reconstitution and purification of the D-glucose transporter from human erythrocytes. J Biol Chem. 1977 Oct 25;252(20):7384–7390. [PubMed] [Google Scholar]
  8. LARIS P. C. Permeability and utilization of glucose in mammalian erythrocytes. J Cell Physiol. 1958 Apr;51(2):273–307. doi: 10.1002/jcp.1030510212. [DOI] [PubMed] [Google Scholar]
  9. LOWRY O. H., ROSEBROUGH N. J., FARR A. L., RANDALL R. J. Protein measurement with the Folin phenol reagent. J Biol Chem. 1951 Nov;193(1):265–275. [PubMed] [Google Scholar]
  10. Steck T. L. The organization of proteins in the human red blood cell membrane. A review. J Cell Biol. 1974 Jul;62(1):1–19. doi: 10.1083/jcb.62.1.1. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. WIDDAS W. F. Hexose permeability of foetal erythrocytes. J Physiol. 1955 Feb 28;127(2):318–327. doi: 10.1113/jphysiol.1955.sp005259. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Journal of Clinical Investigation are provided here courtesy of American Society for Clinical Investigation

RESOURCES