Abstract
Cytotoxic activated macrophages (CM) inhibited the growth of neoplastic L1210 cells in vitro but L1210 cell death was minimal to nonexistent. L1210 cells injured by CM were separated from macrophages and studied in an isolated system. CM-injured L1210 cells had an absolute requirement for glucose or another glycolyzable hexose (mannose or fructose) for at least 40 h after removal from macrophages. If the culture medium lacked sufficient concentration of one of these sugars, CM-injured L1210 cells died within 4 h. Uninjured L1210 cells cultured alone or with peptone-stimulated macrophages had no such requirement and maintained complete viability in hexoseless medium. The hexose requirement of CM-injured L1210 cells could not be fulfilled by other naturally occurring monosaccharides, glucose or mannose derivatives, or substrates that can be oxidized by mitochondria. The concentration requirements for glucose, mannose, and fructose by CM-injured L1210 cells correlated with the concentrations required to support maximal glycolysis of these sugars by other murine ascites cells. A concentration of 2-deoxy-D-glucose which completely inhibited L1210 cell glycolysis also complete prevented the ability of glucose or mannose to maintain viability of CM-injured L1210 cells. Interaction with CM led to inhibition of L1210 cell mitochondrial oxidative phosphorylation. This was supported by the findings that: (a) CM-injured L1210 cells had no Pasteur effect; their rate of aerobic glycolysis was the same as the rate of anaerobic glycolysis of uninjured L1210 cells, (b) Endogenous respiration of CM-injured L1210 cells was 15% of normal. Maximal inhibition of uninjured L1210 cell respiration by a specific mitochondrial poison (oligomycin) was nearly the same (13% of normal). It followed that CM-injured L1210 cells required hexose for chemical energy production via the glycolytic pathway. CM-induced mitochondrial injury occurred in five other neoplastic cell lines tested.
Full text
PDF













Images in this article
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Currie G. A. Activated macrophages kill tumour cells by releasing arginase. Nature. 1978 Jun 29;273(5665):758–759. doi: 10.1038/273758a0. [DOI] [PubMed] [Google Scholar]
- DeFrancesco L., Scheffler I. E., Bissell M. J. A respiration-deficient Chinese hamster cell line with a defect in NADH-coenzyme Q reductase. J Biol Chem. 1976 Aug 10;251(15):4588–4595. [PubMed] [Google Scholar]
- DeFrancesco L., Werntz D., Scheffler I. E. Conditionally lethal mutations in chinese hamster cells. Characterization of a cell line with a possible defect in the Krebs cycle. J Cell Physiol. 1975 Apr;85(2 Pt 1):293–305. doi: 10.1002/jcp.1040850216. [DOI] [PubMed] [Google Scholar]
- Doe W. F., Henson P. M. Macrophage stimulation by bacterial lipopolysaccharides. I. Cytolytic effect on tumor target cells. J Exp Med. 1978 Aug 1;148(2):544–556. doi: 10.1084/jem.148.2.544. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Donnelly M., Scheffler I. E. Energy metabolism in respiration-deficient and wild type Chinese hamster fibroblasts in culture. J Cell Physiol. 1976 Sep;89(1):39–51. doi: 10.1002/jcp.1040890105. [DOI] [PubMed] [Google Scholar]
- Ferluga J., Schorlemmer H. U., Baptista L. C., Allison A. C. Production of the complement cleavage product, C3a, by activated macrophages and its tumorolytic effects. Clin Exp Immunol. 1978 Mar;31(3):512–517. [PMC free article] [PubMed] [Google Scholar]
- Gregg C. T., Machinist J. M., Currie W. D. Glycolytic and respiratory properties of intact mammalian cells: inhibitor studies. Arch Biochem Biophys. 1968 Sep 20;127(1):101–111. doi: 10.1016/0003-9861(68)90206-3. [DOI] [PubMed] [Google Scholar]
- Groot G. S., Kovác L., Schatz G. Promitochondria of anaerobically grown yeast. V. Energy transfer in the absence of an electron transfer chain. Proc Natl Acad Sci U S A. 1971 Feb;68(2):308–311. doi: 10.1073/pnas.68.2.308. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Hibbs J. B., Jr Heterocytolysis by macrophages activated by bacillus Calmette-Guérin: lysosome exocytosis into tumor cells. Science. 1974 Apr 26;184(4135):468–471. doi: 10.1126/science.184.4135.468. [DOI] [PubMed] [Google Scholar]
- Hibbs J. B., Jr, Lambert L. H., Jr, Remington J. S. Resistance to murine tumors conferred by chronic infection with intracellular protozoa, Toxoplasma gondii and Besnoitia jellisoni. J Infect Dis. 1971 Dec;124(6):587–592. doi: 10.1093/infdis/124.6.587. [DOI] [PubMed] [Google Scholar]
- Hibbs J. B., Jr, Taintor R. R., Chapman H. A., Jr, Weinberg J. B. Macrophage tumor killing: influence of the local environment. Science. 1977 Jul 15;197(4300):279–282. doi: 10.1126/science.327547. [DOI] [PubMed] [Google Scholar]
- Hughes R. C., Meager A., Nairn R. Effect of 2-deoxy-D-glucose on the cell-surface glycoproteins of hamster fibroblasts,. Eur J Biochem. 1977 Jan;72(2):265–273. doi: 10.1111/j.1432-1033.1977.tb11249.x. [DOI] [PubMed] [Google Scholar]
- KLEIN G., PERLMANN P. IN VITRO CYTOTOXIC EFFECT OF ISOANTIBODY MEASURED AS ISOTOPE RELEASE FROM LABELLED TARGET CELL DNA. Nature. 1963 Aug 3;199:451–453. doi: 10.1038/199451a0. [DOI] [PubMed] [Google Scholar]
- Kovác L., Kolarov J., Subík J. Genetic determination of the mitochondrial adenine nucleotide translocation system and its role in the eukaryotic cell. Mol Cell Biochem. 1977 Feb 4;14(1-3):11–14. doi: 10.1007/BF01734158. [DOI] [PubMed] [Google Scholar]
- Krahenbuhl J. L., Lambert L. H., Jr Cytokinetic studies of the effects of activated macrophages on tumor target cells. J Natl Cancer Inst. 1975 Jun;54(6):1433–1437. doi: 10.1093/jnci/54.6.1433. [DOI] [PubMed] [Google Scholar]
- Krahenbuhl J. L., Remington J. S. The role of activated macrophages in specific and nonspecific cytostasis of tumor cells. J Immunol. 1974 Aug;113(2):507–516. [PubMed] [Google Scholar]
- Nathan C. F., Silverstein S. C., Brukner L. H., Cohn Z. A. Extracellular cytolysis by activated macrophages and granulocytes. II. Hydrogen peroxide as a mediator of cytotoxicity. J Exp Med. 1979 Jan 1;149(1):100–113. doi: 10.1084/jem.149.1.100. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Nathan C. F., Terry W. D. Differential stimulation of murine lymphoma growth in vitro by normal and BCG-activated macrophages. J Exp Med. 1975 Oct 1;142(4):887–902. doi: 10.1084/jem.142.4.887. [DOI] [PMC free article] [PubMed] [Google Scholar]
- North R. J. The concept of the activated macrophage. J Immunol. 1978 Sep;121(3):806–809. [PMC free article] [PubMed] [Google Scholar]
- Osserman E. F., Klockars M., Halper J., Fischel R. E. Effects of lysozyme on normal and transformed mammalian cells. Nature. 1973 Jun 8;243(5406):331–335. doi: 10.1038/243331a0. [DOI] [PubMed] [Google Scholar]
- Racker E. Bioenergetics and the problem of tumor growth. Am Sci. 1972 Jan-Feb;60(1):56–63. [PubMed] [Google Scholar]
- Reif A. E., Robinson C. M., Incze J. S. Assay of immune cytolysis of lymphocytes and tumour cells by automatic determination of cell volume distribution. Immunology. 1977 Jul;33(1):69–80. [PMC free article] [PubMed] [Google Scholar]
- SKIPPER H. E., SCHABEL F. M., Jr, WILCOX W. S. EXPERIMENTAL EVALUATION OF POTENTIAL ANTICANCER AGENTS. XIII. ON THE CRITERIA AND KINETICS ASSOCIATED WITH "CURABILITY" OF EXPERIMENTAL LEUKEMIA. Cancer Chemother Rep. 1964 Feb;35:1–111. [PubMed] [Google Scholar]
- Stadecker M. J., Calderon J., Karnovsky M. L., Unanue E. R. Synthesis and release of thymidine by macrophages. J Immunol. 1977 Nov;119(5):1738–1743. [PubMed] [Google Scholar]
- WICK A. N., DRURY D. R., NAKADA H. I., WOLFE J. B. Localization of the primary metabolic block produced by 2-deoxyglucose. J Biol Chem. 1957 Feb;224(2):963–969. [PubMed] [Google Scholar]
- Weinberg J. B., Chapman H. A., Jr, Hibbs J. B., Jr Characterization of the effects of endotoxin on macrophage tumor cell killing. J Immunol. 1978 Jul;121(1):72–80. [PubMed] [Google Scholar]
- YUSHOK W. D. Metabolism of ascites tumor cells. I. Rate of glycolysis and competitive utilization of fructose, mannose, and glucose. Cancer Res. 1959 Jan;19(1):104–111. [PubMed] [Google Scholar]