Skip to main content
The Journal of Clinical Investigation logoLink to The Journal of Clinical Investigation
. 1980 Feb;65(2):439–448. doi: 10.1172/JCI109687

Adenylate cyclase responsiveness to hormones in various portions of the human nephron.

D Chabardès, M Gagnan-Brunette, M Imbert-Teboul, O Gontcharevskaia, M Montégut, A Clique, F Morel
PMCID: PMC371382  PMID: 7356689

Abstract

The action sites for parathyroid hormone (PTH), salmon calcitonin (SCT), and arginine-vasopressin (AVP) were investigated along the human nephron by measuring adenylate cyclase activity, using a single tubule in vitro microassay. Well-localized segments of tubule were isolated by microdissection from five human kidneys unsuitable for transplantation. PTH (10 IU/ml) increased adenylate cyclase activity in the convoluted and the straight proximal tubule, in the medullary and cortical portions of the thick ascending limb, and in the early portion of the distal convoluted tubule (corresponding stimulated:basal activity ratios were 64, 19, 10, 18, and 22, respectively). SCT (10 ng/ml) increased adenylate cyclase activity in the medullary and cortical portions of the thick ascending limb, in the early portion of the distal convoluted tubule, and, to a lesser extent, in the cortical and the medullay collecting tubule (activity ratios were 7, 14, 15, 3, and 3, respectively). AVP (1 microM) stimulated adenylate cyclase activity in the terminal nephron segments only, i.e., the late portion of the distal convoluted tubule, the cortical and medullary portions of the collecting tubule (activity ratios 81, 51, and 97, respectively). As measured in one experiment, nearly one-half maximal responses were obtained with 0.1 IU/ml PTH or 0.3 ng/ml SCT in thick ascending limbs and with 1 nM AVP in collecting tubules, suggesting that enzyme sensitivity to hormones as well preserved under the conditions used in this study.

Full text

PDF
439

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Abramow M., Dratwa M. Effect of vasopressin on the isolated human collecting duct. Nature. 1974 Aug 9;250(5466):492–493. doi: 10.1038/250492a0. [DOI] [PubMed] [Google Scholar]
  2. Bockaert J., Roy C., Jard S. Oxytocin-sensitive adenylate cyclase in frog bladder epithelial cells. Role of calcium, nucleotides, and other factors in hormonal stimulation. J Biol Chem. 1972 Nov 10;247(21):7073–7081. [PubMed] [Google Scholar]
  3. Brunette M. G., Chabardes D., Imbert-Teboul M., Clique A., Montégut M., Morel F. Hormone-sensitive adenylate cyclase along the nephron of genetically hypophosphatemic mice. Kidney Int. 1979 Apr;15(4):357–369. doi: 10.1038/ki.1979.47. [DOI] [PubMed] [Google Scholar]
  4. Chabardès D., Imbert-Teboul M., Montégut M., Clique A., Morel F. Distribution of calcitonin-sensitive adenylate cyclase activity along the rabbit kidney tubule. Proc Natl Acad Sci U S A. 1976 Oct;73(10):3608–3612. doi: 10.1073/pnas.73.10.3608. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Chabardès D., Imbert M., Clique A., Montégut M., Morel F. PTH sensitive adenyl cyclase activity in different segments of the rabbit nephron. Pflugers Arch. 1975;354(3):229–239. doi: 10.1007/BF00584646. [DOI] [PubMed] [Google Scholar]
  6. Dousa T. P. Interaction of lithium with vasopressin-sensitive cyclic AMP system of human renal medulla. Endocrinology. 1974 Nov;95(5):1359–1366. doi: 10.1210/endo-95-5-1359. [DOI] [PubMed] [Google Scholar]
  7. Drezner M. K., Burch W. M., Jr Altered activity of the nucleotide regulatory site in the parathyroid hormone-sensitive adenylate cyclase from the renal cortex of a patient with pseudohypoparathyroidism. J Clin Invest. 1978 Dec;62(6):1222–1227. doi: 10.1172/JCI109242. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Imbert-Teboul M., Chabardès D., Montégut M., Clique A., Morel F. Vasopressin-dependent adenylate cyclase activities in the rat kidney medulla: evidence for two separate sites of action. Endocrinology. 1978 Apr;102(4):1254–1261. doi: 10.1210/endo-102-4-1254. [DOI] [PubMed] [Google Scholar]
  9. Imbert M., Chabardes D., Montegut M., Clique A., Morel F. Présence d'une adenyl-cyclase stimulée par la vasopressine dans la branche ascendante des anses des néphrons du rein de Lapin. C R Acad Sci Hebd Seances Acad Sci D. 1975 May 12;280(18):2129–2132. [PubMed] [Google Scholar]
  10. Imbert M., Chabardès D., Montegut M., Clique A., Morel F. Vasopressin dependent adenylate cyclase in single segments of rabbit kidney tubule. Pflugers Arch. 1975 Jun 26;357(3-4):173–186. doi: 10.1007/BF00585973. [DOI] [PubMed] [Google Scholar]
  11. Imbert M., Chabardès D., Montégut M., Clique A., Morel F. Adenylate cyclase activity along the rabbit nephron as measured in single isolated segments. Pflugers Arch. 1975;354(3):213–228. doi: 10.1007/BF00584645. [DOI] [PubMed] [Google Scholar]
  12. Jacobson H. R., Gross J. B., Kawamura S., Waters J. D., Kokko J. P. Electrophysiological study of isolated perfused human collecting ducts: Ion dependency of the transepithelial potential difference. J Clin Invest. 1976 Nov;58(5):1233–1239. doi: 10.1172/JCI108577. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Kim J. K., Frohnert P. P., Hui Y. S., Barnes L. D., Farrow G. M., Dousa T. P. Enzymes of cyclic 3',5'-nucleotide metabolism in human renal cortex and renal adenocarcinoma. Kidney Int. 1977 Sep;12(3):172–183. doi: 10.1038/ki.1977.98. [DOI] [PubMed] [Google Scholar]
  14. Morel F., Chabardès D., Imbert M. Functional segmentation of the rabbit distal tubule by microdetermination of hormone-dependent adenylate cyclase activity. Kidney Int. 1976 Mar;9(3):264–277. doi: 10.1038/ki.1976.29. [DOI] [PubMed] [Google Scholar]
  15. Mulvehill J. B., Hui Y. S., Barnes L. D., Palumbo P. J., Dousa T. P. Glucagon-sensitive adenylate cyclase in human renal medulla. J Clin Endocrinol Metab. 1976 Feb;42(2):380–384. doi: 10.1210/jcem-42-2-380. [DOI] [PubMed] [Google Scholar]
  16. Prusík Z., Sedláková E., Barth T. Isolation of (Arg 8 )vasopressin from the neurophysin complex by free-flow continuous electrophoresis. Hoppe Seylers Z Physiol Chem. 1972 Dec;353(12):1837–1840. doi: 10.1515/bchm2.1972.353.2.1837. [DOI] [PubMed] [Google Scholar]
  17. Rajerison R., Marchetti J., Roy C., Bockaert J., Jard S. The vasopressin-sensitive adenylate cyclase of the rat kidney. Effect of adrenalectomy and corticosteroids on hormonal receptor-enzyme coupling. J Biol Chem. 1974 Oct 25;249(20):6390–6400. [PubMed] [Google Scholar]
  18. Salomon Y., Londos C., Rodbell M. A highly sensitive adenylate cyclase assay. Anal Biochem. 1974 Apr;58(2):541–548. doi: 10.1016/0003-2697(74)90222-x. [DOI] [PubMed] [Google Scholar]

Articles from Journal of Clinical Investigation are provided here courtesy of American Society for Clinical Investigation

RESOURCES