Abstract
When urea and NaCl are employed as the major solutes of high osmolality buffers, the cyclic AMP (cAMP) content of oxygenated slices of rat renal inner medulla increases three- to fivefold as osmolality is decreased from 1,650 to 305 mosM. Incubation of slices in Ca2+-free media containing 2 mM EGTA largely abolished this action of osmolality on cAMP, whereas exclusion of Mg2+ or 5+ from the incubation media was without effect. Addition of Ca2+ to Ca2+-deprived inner medulla incubated at 750 mosM (175 mM Na+, 380 mM urea) significantly increased tissue cAMP and media prostaglandin (PG)E accumulation. Ca2+ also stimulated the release of 14C-fatty acid from Ca2+-deprived slices prelabeled with [14C]arachidonate, but not from those labeled with [14C]palmitate. The divalent cation ionophore A23187 enhanced the actions of Ca2+ to increase tissue cAMP, media PGE accumulation, and the release of [14C]-arachidonate from prelabeled inner medulla. By contrast, when slices were incubated at 1,650 mosM (365 mM Na+, 900 mM urea) in the presence or absence of A23187, all of these actions of Ca2+ were markedly suppressed or abolished. Addition of exogenous arachidonate increased tissue cAMP and media PGE at both 750 and 1,650 mosM, whereas palmitate and stearate had no effect on cAMP at either osmolality. The actions of Ca2+ and arachidonate to increase cAMP and PGE accumulation were abolished by the cyclo-oxygenase inhibitors, indomethacin and meclofenamate. They were also abolished by exclusion of molecular O2, which serves as cosubstrate with arachidonate in prostaglandin synthesis. At maximally effective concentrations, exogenous PGE2 and arachidonate produced similar increases in inner medullary cAMP. The maximal effects of the two agents on cAMP were not additive, but were expressed in the absence of Ca2+ at both 750 and 1,650 mosM. However, in marked contrast to the O2-dependent action of arachidonate, PGE2 increased cAMP in the presence or absence of O2. Comparison of the separate actions of urea and NaCl indicated that suppression of Ca2+-responsive [14C]arachidonate release, PGE, and cAMP accumulation at 1,650 mosM reflected primarily an effect of urea, whereas hypertonic NaCl, mannitol, and sucrose alone stimulated inner medullary cAMP and PGE accumulation by a pathway which did not require extracellular Ca2+. Analogous to the actions of hypertonic urea, tetracaine and mepacrine inhibited the actions of Ca2+ plus A23187 to stimulate [14C]-arachidonate release, PGE, and cAMP accumulation. Inhibition of PGE and cAMP accumulation by tetracaine and mepacrine was also overcome by arachidonate. The results suggest that high osmolaity media with urea as a major solute reduces inner medullary cAMP content, at least in part, through effects on Ca2+-dependent prostaglandin synthesis. Inhibition of PGE synthesis, in turn, may be the result of osmotic suppression of Ca2+-dependent release of arachidonate, the availability of which is often rate limiting to prostaglandin generation.
Full text
PDF













Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- APERIA A. C., LIEBOW A. A. IMPLICATIONS OF URINE PO2 FOR RENAL MEDULLARY BLOOD FLOW. Am J Physiol. 1964 Mar;206:499–504. doi: 10.1152/ajplegacy.1964.206.3.499. [DOI] [PubMed] [Google Scholar]
- APPELBOOM J. W., BRODSKY W. A., SCOTT W. N. EFFECT OF OSMOTIC DIURESIS ON INTRARENAL SOLUTES IN DIABETES INSIPIDUS AND HYDROPENIA. Am J Physiol. 1965 Jan;208:38–45. doi: 10.1152/ajplegacy.1965.208.1.38. [DOI] [PubMed] [Google Scholar]
- Anderson R. J., Berl T., McDonald K. D., Schrier R. W. Evidence for an in vivo antagonism between vasopressin and prostaglandin in the mammalian kidney. J Clin Invest. 1975 Aug;56(2):420–426. doi: 10.1172/JCI108108. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Bills T. K., Smith J. B., Silver M. J. Metabolism of [14C]arachidonic acid by human platelets. Biochim Biophys Acta. 1976 Feb 23;424(2):303–314. doi: 10.1016/0005-2760(76)90198-3. [DOI] [PubMed] [Google Scholar]
- Briggs R. G., Glenn J. L. Lipid accumulation cells derived from porcine aorta and grown under anaerobic conditions. Lipids. 1976 Nov;11(11):791–797. doi: 10.1007/BF02533405. [DOI] [PubMed] [Google Scholar]
- Crowshaw K. The incorporation of (1-14C) arachidonic acid into the lipids of rabbit renal slices and conversion to prostaglandins E2 and F2 . Prostaglandins. 1973 May;3(5):607–620. doi: 10.1016/0090-6980(73)90098-1. [DOI] [PubMed] [Google Scholar]
- Danon A., Chang L. C., Sweetman B. J., Nies A. S., Oates J. A. Synthesis of prostaglandins by the rat renal papilla in vitro. Mechanism of stimulation by angiotensin II. Biochim Biophys Acta. 1975 Apr 18;388(1):71–83. doi: 10.1016/0005-2760(75)90063-6. [DOI] [PubMed] [Google Scholar]
- Danon A., Knapp H. R., Oelz O., Oates J. A. Stimulation of prostaglandin biosynthesis in the renal papilla by hypertonic mediums. Am J Physiol. 1978 Jan;234(1):F64–F67. doi: 10.1152/ajprenal.1978.234.1.F64. [DOI] [PubMed] [Google Scholar]
- DeRubertis F. R., Craven P. A. Alterations in rat renal cortical and medullary guanosine 3'5'-monophosphate accumulation by oxygen- and calcium-dependent and -independent mechanisms: evidence for a calcium-independent action of oxygen in renal inner medulla. Metabolism. 1978 Jul;27(7):855–868. doi: 10.1016/0026-0495(78)90220-2. [DOI] [PubMed] [Google Scholar]
- DeRubertis F. R., Craven P. A. Effects of osmolality and oxygen availability on soluble cyclic AMP-dependent protein kinase activity of rat renal inner medulla. J Clin Invest. 1978 Dec;62(6):1210–1221. doi: 10.1172/JCI109241. [DOI] [PMC free article] [PubMed] [Google Scholar]
- DeRubertis F. R., Craven P. A. Hormonal modulation of cyclic adenosine 3',5'-monophosphate-dependent protein kinase activity in rat renal cortex. Specificity of enzyme translocation. J Clin Invest. 1976 Jun;57(6):1442–1450. doi: 10.1172/JCI108414. [DOI] [PMC free article] [PubMed] [Google Scholar]
- DeRubertis F. R., Zenser T. V., Craven P. A., Davis B. B. Modulation of the cyclic AMP content of rat renal inner medulla by oxygen: possible role of local prostaglandins. J Clin Invest. 1976 Dec;58(6):1370–1378. doi: 10.1172/JCI108592. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Derksen A., Cohen P. Patterns of fatty acid release from endogenous substrates by human platelet homogenates and membranes. J Biol Chem. 1975 Dec 25;250(24):9342–9347. [PubMed] [Google Scholar]
- Derubertis F. R., Craven P. A. Properties of soluble cyclic AMP-dependent protein kinase activity of renal inner medulla. Biochim Biophys Acta. 1979 Jul 18;585(4):499–511. doi: 10.1016/0304-4165(79)90183-1. [DOI] [PubMed] [Google Scholar]
- Dousa T. P., Valtin H. Cellular actions of vasopressin in the mammalian kidney. Kidney Int. 1976 Jul;10(1):46–63. doi: 10.1038/ki.1976.78. [DOI] [PubMed] [Google Scholar]
- Epstein F. H. Disorders of renal concentrating ability. Yale J Biol Med. 1966 Dec;39(3):186–195. [PMC free article] [PubMed] [Google Scholar]
- FOLCH J., LEES M., SLOANE STANLEY G. H. A simple method for the isolation and purification of total lipides from animal tissues. J Biol Chem. 1957 May;226(1):497–509. [PubMed] [Google Scholar]
- Feinstein M. B., Paimre M. Pharmacological action of local anesthetics on excitation-contraction coupling in striated and smooth muscle. Fed Proc. 1969 Sep-Oct;28(5):1643–1648. [PubMed] [Google Scholar]
- Ferraris V. A., DeRubertis F. R. Release of prostaglandin by mitogen- and antigen-stimulated leukocytes in culture. J Clin Invest. 1974 Aug;54(2):378–386. doi: 10.1172/JCI107773. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Fichman M. P., Telfer N., Zia P., Speckart P., Golub M., Rude R. Role of prostaglandins in the pathogenesis of Bartter's syndrome. Am J Med. 1976 May 31;60(6):785–797. doi: 10.1016/0002-9343(76)90892-5. [DOI] [PubMed] [Google Scholar]
- Flower R. J., Blackwell G. J. The importance of phospholipase-A2 in prostaglandin biosynthesis. Biochem Pharmacol. 1976 Feb 1;25(3):285–291. doi: 10.1016/0006-2952(76)90216-1. [DOI] [PubMed] [Google Scholar]
- Flower R. J. Drugs which inhibit prostaglandin biosynthesis. Pharmacol Rev. 1974 Mar;26(1):33–67. [PubMed] [Google Scholar]
- Fujita T., Sakaguchi H., Shibagaki M., Fukui T., Nomura M. The pathogenesis of Bartter's syndrome. Functional and histologic studies. Am J Med. 1977 Sep;63(3):467–474. doi: 10.1016/0002-9343(77)90287-x. [DOI] [PubMed] [Google Scholar]
- Garcia A., Newkirk J. D., Mavis R. D. Lung surfactant synthesis: a Ca++-dependent microsomal phospholipase A2 in the lung. Biochem Biophys Res Commun. 1975 May 5;64(1):128–135. doi: 10.1016/0006-291x(75)90228-4. [DOI] [PubMed] [Google Scholar]
- Gill J. R., Jr, Frölich J. C., Bowden R. E., Taylor A. A., Keiser H. R., Seyberth H. W., Oates J. A., Bartter F. C. Bartter's syndrome: a disorder characterized by high urinary prostaglandins and a dependence of hyperreninemia on prostaglandin synthesis. Am J Med. 1976 Jul;61(1):43–51. doi: 10.1016/0002-9343(76)90029-2. [DOI] [PubMed] [Google Scholar]
- Gilman A. G. A protein binding assay for adenosine 3':5'-cyclic monophosphate. Proc Natl Acad Sci U S A. 1970 Sep;67(1):305–312. doi: 10.1073/pnas.67.1.305. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Jubiz W., Terashima R., Anderson F. L. Effect of sodium on prostaglandin E output by the canine kidney. Adv Prostaglandin Thromboxane Res. 1976;2:603–607. [PubMed] [Google Scholar]
- Kalisker A., Dyer D. C. In vitro release of prostaglandins from the renal medulla. Eur J Pharmacol. 1972 Sep;19(3):305–309. doi: 10.1016/0014-2999(72)90095-7. [DOI] [PubMed] [Google Scholar]
- Knapp H. R., Oelz O., Roberts L. J., Sweetman B. J., Oates J. A., Reed P. W. Ionophores stimulate prostaglandin and thromboxane biosynthesis. Proc Natl Acad Sci U S A. 1977 Oct;74(10):4251–4255. doi: 10.1073/pnas.74.10.4251. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Knapp H. R., Oelz O., Sweetman B. J., Oates J. A. Synthesis and metabolism of prostaglandins E2, F2alpha and D2 by the rat gastrointestinal tract. Stimulation by a hypertonic environment in vitro. Prostaglandins. 1978 May;15(5):751–757. doi: 10.1016/0090-6980(78)90141-7. [DOI] [PubMed] [Google Scholar]
- Krebs E. G. Protein kinases. Curr Top Cell Regul. 1972;5:99–133. [PubMed] [Google Scholar]
- Kunze H., Bohn E., Vogt W. Effects of local anaesthetics on prostaglandin biosynthesis in vitro. Biochim Biophys Acta. 1974 Sep 19;360(3):260–269. doi: 10.1016/0005-2760(74)90055-1. [DOI] [PubMed] [Google Scholar]
- Kunze H., Vogt W. Significance of phospholipase A for prostaglandin formation. Ann N Y Acad Sci. 1971 Apr 30;180:123–125. doi: 10.1111/j.1749-6632.1971.tb53191.x. [DOI] [PubMed] [Google Scholar]
- Law R. O. The inulin space, solute concentrations, and weight changes in rat renal medullary slices incubated in iso-osmolal media, and their modification during anoxia and hypothermia. J Physiol. 1975 May;247(1):37–54. doi: 10.1113/jphysiol.1975.sp010919. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Lum G. M., Aisenbrey G. A., Dunn M. J., Berl T., Schrier R. W., McDonald K. M. In vivo effect of indomethacin to potentiate the renal medullary cyclic AMP response to vasopressin. J Clin Invest. 1977 Jan;59(1):8–13. doi: 10.1172/JCI108624. [DOI] [PMC free article] [PubMed] [Google Scholar]
- McGiff J. C., Wong P. Y. Compartmentalization of prostaglandins and prostacyclin within the kidney: implications for renal function. Fed Proc. 1979 Jan;38(1):89–93. [PubMed] [Google Scholar]
- Oelz O., Knapp H. R., Roberts L. J., Oelz R., Sweetman B. J., Oates J. A., Reed P. W. Calcium-dependent stimulation of thromboxane and prostaglandin biosynthesis by ionophores. Adv Prostaglandin Thromboxane Res. 1978;3:147–158. [PubMed] [Google Scholar]
- Patak R. V., Fadem S. Z., Rosenblatt S. G., Lifschitz M. D., Stein J. H. Diuretic-induced changes in renal blood flow and prostaglandin E excretion in the dog. Am J Physiol. 1979 May;236(5):F494–F500. doi: 10.1152/ajprenal.1979.236.5.F494. [DOI] [PubMed] [Google Scholar]
- Piper P., Vane J. The release of prostaglandins from lung and other tissues. Ann N Y Acad Sci. 1971 Apr 30;180:363–385. doi: 10.1111/j.1749-6632.1971.tb53205.x. [DOI] [PubMed] [Google Scholar]
- RENNIE D. W., REEVES R. B., PAPPENHEIMER J. R. Oxygen pressure in urine and its relation to intrarenal blood flow. Am J Physiol. 1958 Oct;195(1):120–132. doi: 10.1152/ajplegacy.1958.195.1.120. [DOI] [PubMed] [Google Scholar]
- Samuelsson B., Granström E., Green K., Hamberg M., Hammarström S. Prostaglandins. Annu Rev Biochem. 1975;44:669–695. doi: 10.1146/annurev.bi.44.070175.003321. [DOI] [PubMed] [Google Scholar]
- Stylos W., Howard L., Ritzi E., Skarnes R. The preparation and characterization of prostaglandin E1 antiserum. Prostaglandins. 1974 Apr 10;6(1):1–13. doi: 10.1016/s0090-6980(74)80035-3. [DOI] [PubMed] [Google Scholar]
- Tai H. H. Mechanism of prostaglandin biosynthesis in rabbit kidney medulla. A rate-limiting step and the differential stimulatory actions of L-adrenaline and glutathione. Biochem J. 1976 Dec 15;160(3):577–581. doi: 10.1042/bj1600577. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Tinker D. O., Hanahan D. J. Phospholipid metabolism in kidney. 3. Biosynthesis of phospholipids from radioactive precursors in rabbit renal cortex slices. Biochemistry. 1966 Feb;5(2):423–435. doi: 10.1021/bi00866a006. [DOI] [PubMed] [Google Scholar]
- Zenser T. V., Davis B. B. Effects of calcium on prostaglandin E2 synthesis by rat inner medullary slices. Am J Physiol. 1978 Sep;235(3):F213–F218. doi: 10.1152/ajprenal.1978.235.3.F213. [DOI] [PubMed] [Google Scholar]
- Zenser T. V., Levitt M. J., Davis B. B. Effect of oxygen and solute on PGE and PGF production by rat kidney slices. Prostaglandins. 1977 Jan;13(1):143–151. doi: 10.1016/0090-6980(77)90051-x. [DOI] [PubMed] [Google Scholar]
- Zusman R. M., Keiser H. R. Prostaglandin biosynthesis by rabbit renomedullary interstitial cells in tissue culture. Stimulation by angiotensin II, bradykinin, and arginine vasopressin. J Clin Invest. 1977 Jul;60(1):215–223. doi: 10.1172/JCI108758. [DOI] [PMC free article] [PubMed] [Google Scholar]
