Skip to main content
The Journal of Clinical Investigation logoLink to The Journal of Clinical Investigation
. 1980 Mar;65(3):666–674. doi: 10.1172/JCI109712

Circulating heparan sulfate proteoglycan anticoagulant from a patient with a plasma cell disorder.

M S Khoory, M E Nesheim, E J Bowie, K G Mann
PMCID: PMC371408  PMID: 6444419

Abstract

A woman, aged 68, with multiple myeloma (immunoglobulin[Ig]A kappa type) developed an anticoagulant with properties suggestive of heparin. The anticoagulant prolonged the thrombin time but not the reptilase time and was resistant to boiling, proteolytic enzyme digestion, and trichloracetic acid precipitation. The thrombin time was corrected by the addition (in vitro) of protamine sulfate or the addition of purified platelet Factor 4 (PF4) to the plasma. The anticoagulant was isolated by PF4-Sepharose affinity chromatography and analyzed in terms of its molecular weight, uronic acid, and amino acid composition. The proteoglycan isolated had a mol wt of 116,000 and appears to consist of two 38,000 dalton polysaccharide units interconnected by peptide material totaling 39,000 daltons. Electrophoretic analysis of the pronase digested peptidoglycan using the lithium acetate-agarose technique suggested the material was of the heparan sulfate type. The peptidoglycan had about one-tenth the specific activity of commercially available heparin on a weight basis. The isolated proteoglycan was indistinguishable from commercial heparin when analyzed in terms of its ability to act as a cofactor in the antithrombin III inhibition of thrombin.

Full text

PDF
666

Images in this article

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. BITTER T., MUIR H. M. A modified uronic acid carbazole reaction. Anal Biochem. 1962 Oct;4:330–334. doi: 10.1016/0003-2697(62)90095-7. [DOI] [PubMed] [Google Scholar]
  2. Buonassisi V., Root M. Enzymatic degradation of heparin-related mucopolysaccharides from the surface of endothelial cell cultures. Biochim Biophys Acta. 1975 Mar 14;385(1):1–10. doi: 10.1016/0304-4165(75)90067-7. [DOI] [PubMed] [Google Scholar]
  3. Chiarugi V. P., Urbano P. Studies on cell-coat macromolecules in normal and virus-transformed BHK 21-C13 cells. Biochim Biophys Acta. 1973 Mar 16;298(2):195–208. doi: 10.1016/0005-2736(73)90350-7. [DOI] [PubMed] [Google Scholar]
  4. Cohen I., Amir J., Ben-Shaul Y., Pick A., De Vries A. Plasma cell myeloma associated with an unusual myeloma protein causing impairment of fibrin aggregation and platelet function in a patient with multiple malignancy. Am J Med. 1970 Jun;48(6):766–776. doi: 10.1016/s0002-9343(70)80012-2. [DOI] [PubMed] [Google Scholar]
  5. Damus P. S., Rosenberg R. D. Antithrombin-heparin cofactor. Methods Enzymol. 1976;45:653–669. doi: 10.1016/s0076-6879(76)45056-5. [DOI] [PubMed] [Google Scholar]
  6. Glueck H. I., Hong R. A circulating anticoagulant in gamma-1A-multiple myeloma: its modification by penicillin. J Clin Invest. 1965 Nov;44(11):1866–1881. doi: 10.1172/JCI105294. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Harbaugh M. E., Hill E. M., Conn R. B. Antithrombin and antithromboplastin activity accompanying IgG myeloma. Report of a case with a severe bleeding tendency. Am J Clin Pathol. 1975 Jan;63(1):57–67. doi: 10.1093/ajcp/63.3.57. [DOI] [PubMed] [Google Scholar]
  8. Horner A. A. Electrophoresis of acidic mucopolysaccharides in agarose gel. Can J Biochem. 1967 Jul;45(7):1009–1013. doi: 10.1139/o67-116. [DOI] [PubMed] [Google Scholar]
  9. Horner A. A. Enzymic depolymerization of macromolecular heparin as a factor in control of lipoprotein lipase activity. Proc Natl Acad Sci U S A. 1972 Nov;69(11):3469–3473. doi: 10.1073/pnas.69.11.3469. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Horner A. A. Macromolecular heparin from rat skin. Isolation, characterization, and depolymerization with ascorbate. J Biol Chem. 1971 Jan 10;246(1):231–239. [PubMed] [Google Scholar]
  11. Jansson L., Lindahl U. Evidence for the existence of a multichain proteoglycan of heparan sulphate. Biochem J. 1970 May;117(4):699–702. doi: 10.1042/bj1170699. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Johnston L. S., Keller K. L., Keller J. M. The heparan sulfates of Swiss mouse 3T3 cells. The effect of transformation. Biochim Biophys Acta. 1979 Feb 19;583(1):81–94. doi: 10.1016/0304-4165(79)90312-x. [DOI] [PubMed] [Google Scholar]
  13. Katzmann J. A. Myeloma-induced immunosuppression: a multistep mechanism. J Immunol. 1978 Oct;121(4):1405–1409. [PubMed] [Google Scholar]
  14. Kraemer P. M. Heparan sulfates of cultured cells. II. Acid-soluble and -precipitable species of different cell lines. Biochemistry. 1971 Apr 13;10(8):1445–1451. doi: 10.1021/bi00784a027. [DOI] [PubMed] [Google Scholar]
  15. Kumar V., Berenson G. S., Ruiz H., Dalferes E. R., Jr, Strong J. P. Acid mucopolysaccharides of human aorta. 1. Variations with maturation. J Atheroscler Res. 1967 Sep-Oct;7(5):573–581. doi: 10.1016/s0368-1319(67)80035-8. [DOI] [PubMed] [Google Scholar]
  16. Lackner H., Hunt V., Zucker M. B., Pearson J. Abnormal fibrin ultrastructure, polymerization, and clot retraction in multiple myeloma. Br J Haematol. 1970 Jun;18(6):625–636. doi: 10.1111/j.1365-2141.1970.tb01587.x. [DOI] [PubMed] [Google Scholar]
  17. Lasker S. E. Molecular-weight derivative of heparin that is orally active in mice. Adv Exp Med Biol. 1975;52:119–130. doi: 10.1007/978-1-4684-0946-8_10. [DOI] [PubMed] [Google Scholar]
  18. Lundblad R. L., Kingdon H. S., Mann K. G. Thrombin. Methods Enzymol. 1976;45:156–176. doi: 10.1016/s0076-6879(76)45017-6. [DOI] [PubMed] [Google Scholar]
  19. Mann K. G., Heldebrant C. M., Fass D. N. Multiple active forms of thrombin. I. Partial resolution, differential activities, and sequential formation. J Biol Chem. 1971 Oct 10;246(19):5994–6001. [PubMed] [Google Scholar]
  20. Marbrook J. Primary immune response in cultures of spleen cells. Lancet. 1967 Dec 16;2(7529):1279–1281. doi: 10.1016/s0140-6736(67)90393-5. [DOI] [PubMed] [Google Scholar]
  21. Minnikin S. M., Allen A. Cell-surface mucosubstances from trypsin diaggregation of normal and virus-transformed lines of baby-hamster kidney cells. Biochem J. 1973 Aug;134(4):1123–1126. doi: 10.1042/bj1341123. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Muller A. D., van Doorm J. M., Hemker H. C. Heparin-like inhibitor of blood coagulation in normal newborn. Nature. 1977 Jun 16;267(5612):616–617. doi: 10.1038/267616a0. [DOI] [PubMed] [Google Scholar]
  23. Oegema T. R., Jr, Hascall V. C., Eisenstein R. Characterization of bovine aorta proteoglycan extracted with guanidine hydrochloride in the presence of protease inhibitors. J Biol Chem. 1979 Feb 25;254(4):1312–1318. [PubMed] [Google Scholar]
  24. Ogren S., Lindahl U. Cleavage of macromolecular heparin by an enzyme from mouse mastocytoma. J Biol Chem. 1975 Apr 10;250(7):2690–2697. [PubMed] [Google Scholar]
  25. Perkins H. A., MacKenzie M. R., Fudenberg H. H. Hemostatic defects in dysproteinemias. Blood. 1970 May;35(5):695–707. [PubMed] [Google Scholar]
  26. Radhakrishnamurthy B., Ruiz H. A., Jr, Berenson G. S. Isolation and characterization of proteoglycans from bovine aorta. J Biol Chem. 1977 Jul 25;252(14):4831–4841. [PubMed] [Google Scholar]
  27. VERMYLEN C., VERSTRAETE M. Antithrombin V: Critical evaluation of its assessment and properties. Thromb Diath Haemorrh. 1960 Dec 15;5:267–284. [PubMed] [Google Scholar]
  28. Vigliano E. M., Horowitz H. I. Bleeding syndrome in a patient with IgA myeloma: interaction of protein and connective tissue. Blood. 1967 Jun;29(6):823–836. [PubMed] [Google Scholar]
  29. YPHANTIS D. A. EQUILIBRIUM ULTRACENTRIFUGATION OF DILUTE SOLUTIONS. Biochemistry. 1964 Mar;3:297–317. doi: 10.1021/bi00891a003. [DOI] [PubMed] [Google Scholar]
  30. Yurt R. W., Leid R. W., Jr, Austen K. F. Native heparin from rat peritoneal mast cells. J Biol Chem. 1977 Jan 25;252(2):518–521. [PubMed] [Google Scholar]

Articles from Journal of Clinical Investigation are provided here courtesy of American Society for Clinical Investigation

RESOURCES